ERRORS IN FITTING RADIAL DOSE FUNCTION OF COBALT SOURCES FOR BRACHYTHERAPY WITH 3-5 DEGREE POLYNOMIALS
- Authors: Belousov A.V.1,2, Belyanov A.A.1,2, Chernyaev A.P.1,3,4
-
Affiliations:
- Lomonosov Moscow State University
- 1 Leninskie gory, Moscow, 119991, Russian Federation
- 1 Leninskie gory, Moscow, 119991, Russian Federation Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- 1 Leninskie gory, Moscow, 119991, Russian Federation
- Issue: Vol 44, No 2 (2016)
- Pages: 140-147
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/330
- DOI: https://doi.org/10.18786/2072-0505-2016-44-2-140-147
- ID: 330
Cite item
Full Text
Abstract
Background: Providing quality insurance for radiation therapy implies high level of precision for determining absorbed dose, and therefore high level of precision for fitting radial dose function. 3-5 degree polynomials provide required precision, however, uncertainty of their coefficients may cause substantial errors. Aim: To investigate dependence of errors of calculating radial dose function with consideration of uncertainty of coefficients from different degrees of fitting polynomial. Materials and methods: Calculations were performed with software package GEANT4.9.6. Geometry and materials of the source correspond to the model BEBIGCo0.A86. Spectral structure of the source corresponds to the NuDat 2.6 database. Statistical processing was done using nonlinear least-square method. Results: Values of the radial dose function of Cobalt source for brachytherapy were calculated for given geometry. Conducted comparison of precisions of 3 to 5 degree polynomial approximations and possible uncertainties of results of radial dose function calculations. Conclusion: Withrequired precision of 25% and higher at the radius of 10 cm the optimal choice for radial dose approximation is the 3rd degree polynomial.
Keywords
About the authors
A. V. Belousov
Lomonosov Moscow State University; 1 Leninskie gory, Moscow, 119991, Russian Federation
Author for correspondence.
Email: belousovav@physics.msu.ru
PhD (in Physics and Mathematics), Associate Professor, Chair of Physics of Accelerators and Radiation Medicine, Faculty of Physics Россия
A. A. Belyanov
Lomonosov Moscow State University; 1 Leninskie gory, Moscow, 119991, Russian Federation
Email: belousovav@physics.msu.ru
Junior Research Fellow, Chair of Physics of Accelerators and Radiation Medi- cine, Faculty of Physics Россия
A. P. Chernyaev
Lomonosov Moscow State University; 1 Leninskie gory, Moscow, 119991, Russian FederationSkobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; 1 Leninskie gory, Moscow, 119991, Russian Federation
Email: belousovav@physics.msu.ru
PhD (in Physics and Mathematics), Professor, Head of the Chair of Physics of Accelerators and Radiation Medicine, Faculty of Physics, Head of the Laboratory of Beam Technolo- gies and Medical Physics
РоссияReferences
- Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS. Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med Phys. 1995;22(2):209–34. doi: http://dx.doi. org/10.1118/1.597458.
- Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31(3):633–74. doi: http://dx.doi. org/10.1118/1.1646040.
- Bahreyni Toossi MT, Ghorbani M, Mowlavi AA, Meigooni AS. Dosimetric characterizations of GZP6 (60)Co high dose rate brachytherapy sources: application of superimposition method. Radiol Oncol. 2012;46(2):170–8. doi: 10.2478/v10019-012-0005-3.
- Tabrizi SH, Asl AK, Azma Z. Monte Carlo derivation of AAPM TG-43 dosimetric parameters for GZP6 Co-60 HDR sources. Phys Med. 2012;28(2):153–60. doi: 10.1016/j. ejmp.2011.04.004.
- Papagiannis P, Angelopoulos A, Pantelis E, Sakelliou L, Karaiskos P, Shimizu Y. Monte Carlo dosimetry of 60Co HDR brachytherapy sources. Med Phys. 2003;30(4):712–21. doi: http:// dx.doi.org/10.1118/1.1563662.
- Selvam TP, Bhola S. Technical note: EGSnrc-based dosimetric study of the BEBIG 60Co HDR brachytherapy sources. Med Phys. 2010;37(3):1365–70. doi: http://dx.doi. org/10.1118/1.3326948.
- Granero D, Pérez-Calatayud J, Ballester F. Technical note: Dosimetric study of a new Co-60 source used in brachytherapy. Med Phys. 2007;34(9):3485–8. doi: http://dx.doi. org/10.1118/1.2759602.
- Ballester F, Granero D, Pérez-Calatayud J, Casal E, Agramunt S, Cases R. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source. Phys Med Biol. 2005;50(21):N309–16.
- High Energy Brachytherapy Source Dosimetry (HEBD) Working Group. Dose Calculation for Photon-Emitting Brachytherapy Sources with Average Energy Higher than 50 keV: Full Report of the AAPM and ESTRO. AAPM One Physics Ellipse College Park, MD 20740-3846; 2012. 229 p.
- http://www.nndc.bnl.gov/nudat2/