Intraoperative computed tomography perfusion navigation for maximal resection of high grade gliomas: a prospective non-randomized trial

Cover Page


Cite item

Full Text

Abstract

Background: The main purpose of surgery for glioblastoma is to ensure the maximally possible cytoreduction. Computed tomography perfusion imaging has non-invasive tools for assessment of tumor blood flow and allows for visualization of the tumor borders and its most malignant zones.

Aim: To evaluate the efficacy of intraoperative computed tomography perfusion navigation (ICTPN) during surgery for high grade gliomas.

Materials and methods: This prospective non-randomized study included 142 patients (76 men and 66 women) with morphologically verified diagnosis of glioblastoma or diffuse astrocytoma grade 4 (World Health Organization 2021 criteria), who had surgery from 2016 to 2022. The ICTPN-based procedures were performed in 94 patients, with 55 with gross total and 39 with subtotal tumor resection. The control group included 48 patients with non-ICTPN-based surgical procedures. All patients were treated with standard adjuvant chemoradiation therapy. The efficacy of surgery was assessed every 3 months. The study endpoint was any tumor progression. The duration of the follow-up was 15 months. Baseline and contrast-enhanced preoperative imaging and postoperative follow-up assessments were performed with a 3T magnetic resonance imaging scanner (General Electric Discovery W750). ICTPN was done with a 32 slice computed tomography scanner (Toshiba Aquilion LB).

Results: In the totally resected ICTPN group, the mean duration of the relapse-free period was 13.05 months; the relapse-free survival at 6 and 12 months was 92 and 55%, respectively (p < 0.001). These results were significantly better than those in the subtotally resected ICTPN patients (8.98 months, 66 and 9%, respectively; log rank test for Kaplan-Meier curves, p < 0.001) and in non-ICTPN patients (5.81 months, 23 and 0%, respectively, log rank test, p < 0.001).

Conclusion: ICTPN enables a more objective assessment of the tumor borders and the extent of its resection, as well as relapse-free survival benefits for the patients.

Full Text

The article has been retracted.

Retraction notice: https://doi.org/10.18786/2072-0505-2023-51-023 

×

About the authors

Rustam S. Talybov

Regional Clinical Hospital No. 2 (Tyumen)

Email: rustam230789@gmail.com
ORCID iD: 0000-0003-3820-2057

Radiologist, Head of Department of X-ray Diagnostics

Russian Federation, ul. Mel'nikayte 75, Tyumen, 625039

Tatyana N. Trofimova

N.P. Bechtereva Institute of the Human Brain

Email: ttrofimova@groupmmc.ru
ORCID iD: 0000-0003-4871-2341

MD, PhD, Professor, Corr. Member of Russ. Acad. Sci., Chief Research Fellow, Laboratory of Neurovisualization

Russian Federation, ul. Akademika Pavlova 9, Saint Petersburg, 197376

Vadim V. Mochalov

Regional Clinical Hospital No. 2 (Tyumen)

Email: luther1992@gmail.com
ORCID iD: 0000-0003-0608-8915

Radiologist

Russian Federation, ul. Mel'nikayte 75, Tyumen, 625039

Ivan V. Shvetsov

Regional Clinical Hospital No. 2 (Tyumen)

Email: shved1906@mail.ru
ORCID iD: 0000-0001-9761-1198

MD, PhD, Acting Chief Physician

Russian Federation, ul. Mel'nikayte 75, Tyumen, 625039

Vladislav V. Spasennikov

Tyumen State Medical University

Author for correspondence.
Email: acrispire@gmail.com
ORCID iD: 0000-0002-1180-4886

6th Year Student, Faculty of General Medicine

Russian Federation, ul. Odesskaya 54, Tyumen, 625023

References

  1. Dixon L, Lim A, Grech-Sollars M, Nandi D, Camp S. Intraoperative ultrasound in brain tumor surgery: A review and implementation guide. Neurosurg Rev. 2022;45(4):2503–2515. doi: 10.1007/s10143-022-01778-4.
  2. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8. doi: 10.3171/2011.2.jns10998.
  3. Goryaynov SA, Potapov AA, Okhlopkov VA, Batalov AI, Afandiev RO, Belyaev AYu, Aristov AA, Caveleva TA, Zhukov VYu, Loshchenov VB, Gusev DV, Zakharova NE. Metabolic navigation during brain tumor surgery: analysis of a series of 403 patients. Russian Journal of Neurosurgery. 2022;24(4):46–58. doi: 10.17650/1683-3295-2022-24-4-46-58.
  4. Pope WB, Brandal G. Conventional and advanced magnetic resonance imaging in patients with high-grade glioma. Q J Nucl Med Mol Imaging. 2018;62(3):239–253. doi: 10.23736/S1824-4785.18.03086-8.
  5. Levenson CW, Morgan TJ, Twigg PD Jr, Logan TM, Schepkin VD. Use of MRI, metabolomic, and genomic biomarkers to identify mechanisms of chemoresistance in glioma. Cancer Drug Resist. 2019;2(3):862–876. doi: 10.20517/cdr.2019.18.
  6. Talybov R, Beylerli O, Mochalov V, Prokopenko A, Ilyasova T, Trofimova T, Sufianov A, Guang Y. Multiparametric MR Imaging Features of Primary CNS Lymphomas. Front Surg. 2022;9:887249. doi: 10.3389/fsurg.2022.887249.
  7. Onishi S, Kajiwara Y, Takayasu T, Kolakshyapati M, Ishifuro M, Amatya VJ, Takeshima Y, Sugiyama K, Kurisu K, Yamasaki F. Perfusion Computed Tomography Parameters Are Useful for Differentiating Glioblastoma, Lymphoma, and Metastasis. World Neurosurg. 2018;119:e890–e897. doi: 10.1016/j.wneu.2018.07.291.
  8. Wang K, Li Y, Cheng H, Li S, Xiang W, Ming Y, Chen L, Zhou J. Perfusion CT detects alterations in local cerebral flow of glioma related to IDH, MGMT and TERT status. BMC Neurol. 2021;21(1):460. doi: 10.1186/s12883-021-02490-4.
  9. Jia ZZ, Shi W, Shi JL, Shen DD, Gu HM, Zhou XJ. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature. Eur J Radiol. 2017;87:120–124. doi: 10.1016/j.ejrad.2016.12.016.
  10. Maarouf R, Sakr H. A potential role of CT perfusion parameters in grading of brain gliomas. Egypt J Radiol Nucl Med. 2015;46(4):1119–1128. doi: 10.1016/j.ejrnm.2015.07.002.
  11. Maral H, Ertekin E, Tunçyürek Ö, Özsunar Y. Effects of Susceptibility Artifacts on Perfusion MRI in Patients with Primary Brain Tumor: A Comparison of Arterial Spin-Labeling versus DSC. AJNR Am J Neuroradiol. 2020;41(2):255–261. doi: 10.3174/ajnr.A6384.
  12. Wu J, Al-Zahrani A, Beylerli O, Sufianov R, Talybov R, Meshcheryakova S, Sufianova G, Gareev I, Sufianov A. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in High-Grade Gliomas. Front Oncol. 2022;12:898537. doi: 10.3389/fonc.2022.898537.
  13. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126.
  14. Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D, Baranowska-Bosiacka I. Epidemiology of Glioblastoma Multiforme-Literature Review. Cancers (Basel). 2022;14(10):2412. doi: 10.3390/cancers14102412.
  15. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, Soffietti R, Wick W; European Association for Neuro-Oncology (EANO) Task Force on Malignant Glioma. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 2014;15(9):e395–e403. doi: 10.1016/S1470-2045(14)70011-7.
  16. Aydin S, Fatihoğlu E., Koşar PN, Ergün E. Perfusion and permeability MRI in glioma grading. Egypt J Radiol Nucl Med. 2020;51(2). doi: 10.1186/s43055-019-0127-3.
  17. Ishikawa E, Sugii N, Matsuda M, Kohzuki H, Tsurubuchi T, Akutsu H, Takano S, Mizumoto M, Sakurai H, Matsumura A. Maximum resection and immunotherapy improve glioblastoma patient survival: a retrospective single-institution prognostic analysis. BMC Neurol. 2021;21(1):282. doi: 10.1186/s12883-021-02318-1.
  18. Haddad AF, Young JS, Morshed RA, Berger MS. FLAIRectomy: Resecting beyond the Contrast Margin for Glioblastoma. Brain Sci. 2022;12(5):544. doi: 10.3390/brainsci12050544.
  19. Broen MPG, Smits M, Wijnenga MMJ, Dubbink HJ, Anten MHME, Schijns OEMG, Beckervordersandforth J, Postma AA, van den Bent MJ. The T2-FLAIR mismatch sign as an imaging marker for non-enhancing IDH-mutant, 1p/19q-intact lower-grade glioma: a validation study. Neuro Oncol. 2018;20(10):1393–1399. doi: 10.1093/neuonc/noy048.
  20. van Dijken BRJ, van Laar PJ, Smits M, Dankbaar JW, Enting RH, van der Hoorn A. Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques. J Magn Reson Imaging. 2019;49(1):11–22. doi: 10.1002/jmri.26306.
  21. Li C, Yan JL, Torheim T, McLean MA, Boonzaier NR, Zou J, Huang Y, Yuan J, van Dijken BRJ, Matys T, Markowetz F, Price SJ. Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival. Radiother Oncol. 2019;134:17–24. doi: 10.1016/j.radonc.2019.01.008.
  22. Delgado-López PD, Corrales-García EM. Survival in glioblastoma: a review on the impact of treatment modalities. Clin Transl Oncol. 2016;18(11):1062–1071. doi: 10.1007/s12094-016-1497-x.
  23. Hopyan JJ, Gladstone DJ, Mallia G, Schiff J, Fox AJ, Symons SP, Buck BH, Black SE, Aviv RI. Renal safety of CT angiography and perfusion imaging in the emergency evaluation of acute stroke. AJNR Am J Neuroradiol. 2008;29(10):1826–1830. doi: 10.3174/ajnr.A1257.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Talybov R.S., Trofimova T.N., Mochalov V.V., Shvetsov I.V., Spasennikov V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies