THE TIME COURSE OF ABNORMALITIES IN THE BRAIN SUBCORTICAL VISUAL CENTRE FOLLOWING EARLY IMPAIRMENT OF BINOCULAR EXPERIENCE

Cover Page


Cite item

Full Text

Abstract

Background: Amblyopia related to congenital strabismus belongs to neurological disorders since it is caused by structural and functional remodeling of the visual parts of the brain without any baseline retinal pathology. Although a large number of animal studies on experimentally induced strabismus, as well as clinical cases have been published, the mechanisms and time course of the processes within the brain structures are not fully understood. Aim: To study the time course of abnormalities in the dorsal lateral geniculate nucleus (LGNd) in animals with surgically induced convergent strabismus. LGNd is the structure through which the information from the retina goes to the visual cortex separately for each eye. Materials and methods: 14 strabismic and 17 intact kittens of four age groups were studied. Histochemical method was used to identify cytochrome oxidase which is a  mitochondrial respiratory chain enzyme whose activity correlates with neuronal functional activity. Optical density in eye-specific layers  A  and A1 was measured on the images of stained LGNd sections, with calculation of the contrast difference between them. Results: In strabismic kittens, there were changes in activity of A and A1 layers in the projection of the central part of visual field in LGNd of both hemispheres. At early stages of their formation, a relative decrease in activity was found in both hemispheres in the LGNd layers innervated through non-crossed pathways from both retinae. Thereafter, the time course of abnormalities in LGNd of both hemispheres was different. In the hemisphere ipsilateral to the squinting eye, the difference in layer activity was highest at the age from 3 to 5 months. However, in the opposite hemisphere the same difference indicating a decreased activity in the layer of the squinting eye were observed only at the age of 5 months. Conclusion: The process of amblyopia development during congenital convergent strabismus is characterized by abnormalities in LGNd indicating a possible shift of the visual perception strategy from alternating fixation to suppression of activity of the squinting eye. 

About the authors

S. V. Alekseenko

Pavlov Institute of Physiology Russian Academy of Sciences

Author for correspondence.
Email: binocularity@yandex.ru

PhD (in Biology), Leading Research Fellow, Vision Physiology Laboratory

6 Naberezhnaya Makarova, Saint Petersburg, 199034

Tel.: +7 (911) 221 59 68

Россия

P. Yu. Shkorbatova

Pavlov Institute of Physiology Russian Academy of Sciences

Email: fake@neicon.ru
6 Naberezhnaya Makarova, Saint Petersburg, 199034 Россия

References

  1. Муравьева СВ, Фокин ВА, Ефимцев АЮ, Шелепин ЮЕ. Пространственно-частотные каналы зрительной системы при рассеянном склерозе. Сенсорные системы. 2013;27(2):130–43.
  2. Шошина ИИ, Шелепин ЮЕ, Конкина СА, Пронин СВ, Бендера АП. Исследование парвоцеллюлярных и магноцеллюлярных зрительных каналов в норме и при психопа- тологии. Российский физиологический журнал им. И.М. Сеченова. 2012;98(5):657–64.
  3. Симонова НА, Гарах ЖВ, Зайцева ЮС, Шмуклер АБ. Нейрофизиологические механиз- мы нарушения зрительного восприятия при шизофрении. Социальная и клиническая психиатрия. 2014;24(1):81–9. 4. Рожкова ГИ, Матвеев СГ. Зрение детей: проблемы оценки и функциональной коррек- ции. М.: Наука; 2007. 315 c.
  4. Fronius M, Sireteanu R, Zubcov A. Deficits of spatial localization in children with strabismic amblyopia. Graefes Arch Clin Exp Ophthalmol. 2004;242(10):827–39. doi: 10.1007/s00417- 004-0936-5.
  5. Рычкова СИ, Васильева НН. Взаимоотношение монокулярных и бинокулярных механизмов пространственного восприятия при разных видах амблиопии. Сенсорные системы. 2011;25(2):119–30.
  6. Simmers AJ, Ledgeway T, Hess RF, McGraw PV. Deficits to global motion processing in human amblyopia. Vision Res. 2003;43(6):729–38. doi: 10.1016/S0042-6989(02)00684-3.
  7. Thiel A, Sireteanu R. Strabismic amblyopes show a bilateral rightward bias in a line bisection task: evidence for a visual attention deficit. Vision Res. 2009;49(3):287–94. doi: 10.1016/j.visres.2008.08.005.
  8. Daw NW. Visual development. New York: Springer; 2014. 245 p. doi: 10.1007/978-1- 4614-9059-3.
  9. Sengpiel F, Blakemore C. The neural basis of suppression and amblyopia in strabismus. Eye (Lond). 1996;10(Pt 2):250–8.
  10. Muckli L, Kiess S, Tonhausen N, Singer W, Goebel R, Sireteanu R. Cerebral correlates of impaired grating perception in individual, psychophysically assessed human amblyopes. Vision Res. 2006;46(4):506–26. doi: 10.1016/j. visres.2005.10.014.
  11. Hubel DH, Wiesel TN. Brain and visual perception. New York: Oxford University Press; 2005. 744 p.
  12. Шкорбатова ПЮ, Топорова СН, Макаров ФН, Алексеенко СВ. Внутрикорковые связи глазодоминантных колонок полей 17 и 18 при экспериментальном косоглазии у кошки. Сенсорные системы. 2006;20(4):309–18.
  13. Алексеенко СВ, Шкорбатова ПЮ, Топорова СН, Солнушкин СД. Влияние косоглазия и монокулярной депривации на структуру межполушарных связей в проекционных зрительных полях коры кошки. Сенсорные системы. 2012;26(2):106–16.
  14. Kalil RE, Spear PD, Langsetmo A. Response properties of striate cortex neurons in cats raised with divergent or convergent strabismus. J Neurophysiol. 1984;52(3):514–37.
  15. von Noorden GK, Crawford ML. The lateral geniculate nucleus in human strabismic amblyopia. Invest Ophthalmol Vis Sci. 1992;33(9):2729–32.
  16. Hess RF, Thompson B, Gole GA, Mullen KT. The amblyopic deficit and its relationship to geniculo-cortical processing streams. J Neurophysiol. 2010;104(1):475–83. doi: 10.1152/jn.01060.2009.
  17. Wong-Riley M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 1979;171(1):11–28. doi: 10.1016/0006-8993(79)90728-5.
  18. Sanderson KJ. The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J Comp Neurol. 1971;143(1):101–8. doi: 10.1002/ cne.901430107.
  19. Sireteanu R. The binocular visual system in amblyopia. Strabismus. 2000;8(1):39–51.
  20. O'Shea RP, McDonald AA, Cumming A, Peart D, Sanderson G, Molteno AC. Interocular transfer of the movement aftereffect in central and peripheral vision of people with strabismus. Invest Ophthalmol Vis Sci. 1994;35(1):313–7.
  21. Crair MC, Horton JC, Antonini A, Stryker MP. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J Comp Neurol. 2001;430(2):235–49. doi: 10.1002/1096-9861(20010205)430: 23.0.CO;2-P.
  22. Cheng H, Chino YM, Smith EL 3rd, Hamamoto J, Yoshida K. Transfer characteristics of X LGN neurons in cats reared with early discordant binocular vision. J Neurophysiol. 1995;74(6):2558–72.
  23. Ikeda H, Plant GT, Tremain KE. Nasal field loss in kittens reared with convergent squint: neurophysiological and morphological studies of the lateral geniculate nucleus. J Physiol. 1977;270(2):345–66. doi: 10.1113/ jphysiol.1977.sp011956.
  24. Sasaki Y, Cheng H, Smith EL 3rd, Chino Y. Effects of early discordant binocular vision on the postnatal development of parvocellular neurons in the monkey lateral geniculate nucleus. Exp Brain Res. 1998;118(3):341–51.
  25. Borostyánkói Z, Sényi K. Time-course of interocular alignment in arteficially esotropic cats. Orv Hetil. 2000;141(35):1929–32.
  26. Lerner Y, Pianka P, Azmon B, Leiba H, Stolovitch C, Loewenstein A, Harel M, Hendler T, Malach R. Area-specific amblyopic effects in human occipitotemporal object representations. Neuron. 2003;40(5):1023–9. doi: 10.1016/S0896-6273(03)00720-7.
  27. Mendola JD, Conner IP, Roy A, Chan ST, Schwartz TL, Odom JV, Kwong KK. Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia. Hum Brain Mapp. 2005;25(2):222–36. doi: 10.1002/ hbm.20109.
  28. Banks MS, Aslin RN, Letson RD. Sensitive period for the development of human binocular vision. Science. 1975;190(4215):675–7. doi: 10.1126/science.1188363.
  29. West S, Williams C. Amblyopia. BMJ Clin Evid. 2011;2011. pii: 0709.
  30. Pediatric Eye Disease Investigator Group. Spontaneous resolution of early-onset esotropia: experience of the Congenital Esotropia Observational Study. Am J Ophthalmol. 2002;133(1):109–18. doi: 10.1016/S0002-9394(01)01316-2.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Alekseenko S.V., Shkorbatova P.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies