AN IN VIVO STUDY OF THE EFFECTS OF IONIZING RADIATION ON TISSUES BY LASER FLUORESCENCE SPECTROSCOPY

Cover Page

Cite item

Abstract

Background: Laser fluorescence spectroscopy (LFS) is widely used in various medical areas, oncology being the most known of them. In general, the LFS is used for in vivo diagnostics of tumors. Recent studies have shown that this method could be used for diagnostics of local inflammation, induced by thermal or mechanical injury. It is of interest if LFS could be used for assessment of soft biological tissue injury caused by radiation exposure. Aim: To study fluorescence of an exogenous photosensitizer and its changes over time in the radiation injury area by LFS method in vivo. Materials and methods: The experiment was done in 12 outbred SHK mice whose right hind limbs were irradiated using a gamma-therapy device ROKUS-AM (source, 60Co, at dose of 15 Gy). Before irradiation, the photosensitizer Photosens was administered to all animals intraperitoneally at dose of 2.5 mg/kg. For 21 days fluorescence was assessed in vivo with a laser diagnostic system LAKK-M in the “fluorescence” operation mode, with an excitation wavelength of 635 nm. At days 7 and 21, tissue samples from the irradiated areas of the model animals were studied histologically and differential blood cell counts were assessed simultaneously. Results: The LFS method showed an increase in the accumulation of the photosensitizer in the affected area, compared to an intact contralateral area, with higher signal intensity from the irradiated limb. The changes in the fluorescence signal from the affected over time had two characteristic peaks at days 3 and 14, probably reflecting the stage of local radiation injury. Conclusion: The use of LFS with an exogenous photosensitizer has a potential for a personalized assessment of radiation reactions in radiology.

About the authors

I. A. Guseva

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); 31 Kashirskoe shosse, Moscow, 115409, Russian Federation

Author for correspondence.
Email: gusevairinaand@gmail.com
Technicist, Laboratory of Medical and Physics Research; PhD Student, Faculty of Experimental and Theoretical Physics Russian Federation

P. A. Kulikova

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
Clinical Resident, Department of Medical Endocrinology; Research Assistant, Laboratory of Medical and Physics Research Russian Federation

O. A. Bychenkov

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
MD, PhD, Senior Research Fellow, Department of Radiology Russian Federation

D. A. Rogatkin

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
PhD (in Engineering), Head of Laboratory of Medical and Physics Research Russian Federation

D. A. Kulikov

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
MD, PhD, Scientific Secretary Russian Federation

Yu. V. Chursinova

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
Research Fellow, Department of Planning and Coordination of Research; Assistant, Clinical Laboratory Diagnostics Department, Postgraduate Training Faculty Russian Federation

M. A. Bobrov

Moscow Regional Research and Clinical Institute (MONIKI); 61/2 Shchepkina ul., Moscow, 129110, Russian Federation

Email: gusevairinaand@gmail.com
Research Fellow, Pathologoanatomy Department Russian Federation

References

  1. Филоненко ЕВ. История развития флуоресцентной диагностики и фотодинамической терапии и их возможности в онкологии. Российский химический журнал. 2013;57(2):5–9.
  2. Иванова СВ, Кирпиченок ЛН. Использование флуоресцентных методов в медицине. Медицинские новости. 2008;(12):56–61.
  3. Рогаткин ДА. Физические основы лазерной клинической флюоресцентной спектроскопии in vivo. Медицинcкая физика. 2014;(4):78–96.
  4. Lipson RL, Baldes EJ, Olsen AM. Further evaluation of the use of hematoporphyrin derivative as a new aid for the endoscopic detection of malignant disease. Dis Chest. 1964;46:676–9.
  5. Calin MA, Parasca SV, Savastru R, Calin MR, Dontu S. Optical techniques for the noninvasive diagnosis of skin cancer. J Cancer Res Clin Oncol. 2013;139(7):1083–104. doi: 10.1007/s00432-013-1423-3.
  6. Murayama Y, Ichikawa D, Koizumi N, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, Kubota T, Nakanishi M, Harada Y, Fujiwara H, Okamoto K, Ochiai T, Kokuba Y, Takamatsu T, Otsuji E. Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res. 2012;32(12):5421–7.
  7. Andersson-Engels S, Berg R, Svanberg K, Svanberg S. Multi-colour fluorescence imaging in connection with photodynamic therapy of delta-amino levulinic acid (ALA) sensitised skin malignancies. Bioimaging. 1995;3(3):134–43. doi: 10.1002/1361-6374(199509)3:33.0.CO;2-1.
  8. Петрицкая ЕН, Куликов ДА, Рогаткин ДА, Гусева ИА, Куликова ПА. Использование флуоресцентной спектроскопии для диагностики гипоксии и воспалительных процессов в тканях. Оптический журнал. 2015;82(12):41–6.
  9. Nuyts S, Lambrecht M, Duprez F, Daisne JF, Van Gestel D, Van den Weyngaert D, Platteaux N, Geussens Y, Voordeckers M, Madani I, De Neve W. Reduction of the dose to the elective neck in head and neck squamous cell carcinoma, a randomized clinical trial using intensity modulated radiotherapy (IMRT). Dosimetrical analysis and effect on acute toxicity. Radiother Oncol. 2013;109(2):323–9. doi: 10.1016/j.radonc.2013.06.044.
  10. Тамаркина ЕИ, Миронова ЕБ, Жаркова ОВ, Коробкин СА, Тамаркин ВО, Вихлянов ИВ, Карасева ВВ. Химиолучевое лечение местнораспространенного рака органов полости рта и ротоглотки. Вестник РОНЦ им. Н.Н. Блохина РАМН. 2006;17(3):49–53.
  11. Чиссов ВИ, Давыдов МИ, ред. Онкология: национальное руководство. М.: ГЭОТАР-Медиа; 2008. 1072 с.
  12. Flanders KC, Sullivan CD, Fujii M, Sowers A, Anzano MA, Arabshahi A, Major C, Deng C, Russo A, Mitchell JB, Roberts AB. Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol. 2002;160(3):1057–68. doi: 10.1016/S0002- 9440(10)64926-7.
  13. Weissberg JB, Fischer JJ. Effect of purine nucleosides and nucleotides on the in vivo radiation response of normal tissue in the rat. Int J Radiat Oncol Biol Phys. 1981;7(3):365–9. doi: 10.1016/0360-3016(81)90110-3.
  14. Gottlöber P, Krähn G, Peter RU. Cutaneous radiation syndrome: clinical features, diagnosis and therapy. Hautarzt. 2000;51(8):567–74.
  15. Пиголкин ЮИ, Квачева ЮЕ. Современные возможности судебно-медицинской экспертизы местной радиационной травмы. Судебно-медицинская экспертиза. 2012;(3):52–5.
  16. Горенков РВ, Казаков АА, Назаренко ММ, Рогаткин ДА, Свирин ВН, Черкасов АС, Черненко ВП. Способ определения состояния биологической ткани и диагностическая система для его реализации. Патент РФ на изобретение № 2234242 от 19.03.2002.
  17. Rogatkin D, Shumskiy V, Tereshenko S, Polyakov P. Laser-based non-invasive spectrophotometry – an overview of possible medical applications. Photonics & Lasers in Medicine. 2013;2(3):225–240. doi: 10.1515/ plm-2013-0010.
  18. Пальцев МА, Аничков НМ, Литвицкий ПФ. Патология человека. Учебник для медицинских вузов. В 3-х т. М.: Медицина; 2009. 1448 c.
  19. Ezeh PC, Lauer FT, MacKenzie D, McClain S, Liu KJ, Hudson LG, Gandolfi AJ, Burchiel SW. Arsenite selectively inhibits mouse bone marrow lymphoid progenitor cell development in vivo and in vitro and suppresses humoral immunity in vivo. PLoS One. 2014;9(4):e93920. doi: 10.1371/journal.pone.0093920.
  20. Rogatkin DA, Polyakov PYu, Bychenkov OA, Stepanenko EN. Non-invasive fluorescent diagnostics in radiotherapy of mucosal oral tumors. Proc. SPIE; 4707. Saratov Fall Meeting 2001: Optical Technologies in Biophysics and Medicine III, 236 (July 16, 2002). p. 236–43. doi: 10.1117/12.475595.
  21. Rogatkin DA, Bychenkov OA, Lapaeva LG. The accuracy, reliability, and interpretation of the results of in vivo laser fluorescence diagnosis in the spectral range of the fluorescence of endogenous porphyrins. J Opt Technol. 2009;76(11):708–13. doi: 10.1364/ JOT.76.000708.

Copyright (c) 2016 Guseva I.A., Kulikova P.A., Bychenkov O.A., Rogatkin D.A., Kulikov D.A., Chursinova Y.V., Bobrov M.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies