Assessment of an antitumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone in A-549 tumor cell subcutaneous xenografts

Cover Page


Cite item

Full Text

Abstract

Rationale: Chemotherapy is one of the lung cancer treatment methods. The search for new substances with antitumor effect against malignant lung neoplasms is relevant because of low efficacy and side effects of cytotoxic agents. A promising substance class with various biological activities, including antitumor, includes alkaloids of the tropolone family, such as heptamerous non-benzoid aromatic compounds. 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone has been synthesized in Institute of Physical and Organic Chemistry; it is a  new compound belonging to 2-quinoline-2-yl derivatives of 1,3-tropolone.

Aim: To assess the antitumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone on subcutaneous xenografts of A-549 lung tumor cells in immunodeficient Balb/c Nude mice.

Materials and methods: The study included 50  immunodeficient Balb/c Nude mice divided into 4  experimental groups depending on the dosage of the study substance (0.0055, 0.055, 0.55, and 2.75  mg/g); group 5  was the control group. A-549  cells of lung cancer were used as a xenograft. The antitumor effect of tropolone was evaluated by the inhibition of tumor growth and the index of tumor growth. The experiment lasted for 36 days starting from the first administration of the substances.

Results: The mean tumor volumes on day 36  of the experiment in the control group and four experimental groups were 2729.5; 2150.8; 1746.4; 952.3  and 678.9  mm3 , respectively. The indices of tumor growth in groups  1, 2, 3 and 4 were significantly lower than in group 5 (control) starting from days 24, 21, 21 and 15, respectively, and till the end of the experiment. Maximal differences between groups 4 and 5 were observed at days 33 and 36 (by  3.7, p=0.01 and 4.1, p=0.003  times, respectively).

Discussion: The anti-tumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone demonstrated in the study could be related to various mechanisms. For example, numerous studies have shown that its related compound hinokitiol exerts a cytotoxic effect associated with cessation of the cell cycle, apoptosis induction, DNA damage, and autophagic death of tumor cells.

Conclusion: The study demonstrated significant differences in xenograft volumes in all experimental groups, compared to the control group. In mice, 2.75  mg/g bodyweight was the most effective dosage of the studied compound leading to a slow decrease in tumor growth rates and a  decrease in the volumes of subcutaneous xenografts.

About the authors

E. A. Lukbanova

National Medical Research Centre for Oncology

Author for correspondence.
Email: katya.samarskaja@yandex.ru
ORCID iD: 0000-0002-3036-6199

Ekaterina A. Lukbanova – Research Fellow, Experimental Laboratory Center 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

E. V. Zaikina

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-0088-2990

Ekaterina V. Zaikina – Junior Research Fellow, Experimental Laboratory Center 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

Yu. A. Sayapin

Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences

Email: fake@neicon.ru
ORCID iD: 0000-0002-3180-1762

Yurii A. Sayapin – PhD (in Chem.), Head of Laboratory of Physical Organic Chemistry

41 Chekhova prospekt, Rostov-on-Don, 344006

Россия

E. A. Gusakov

Institute of Physical and Organic Chemistry

Email: fake@neicon.ru
ORCID iD: 0000-0001-7593-1334

Evgeniy A. Gusakov – PhD (in Chem.), Research Fellow 

194/2 Stachki prospekt, Rostov-on-Don, 344090

Россия

S. Yu. Filippova

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-4558-5896

Svetlana Yu. Filippova – Research Fellow, Cell Technologies Laboratory 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

E. Yu. Zlatnik

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-1410-122X

Elena Yu. Zlatnik – MD, PhD, Professor, Chief Research Fellow, Laboratory for Immunophenotyping of Tumors 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

A. V. Volkova

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0001-7823-3865

Anastasia V. Volkova – Junior Research Fellow, Experimental Laboratory Center 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

L. Z. Kurbanova

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-3436-1325

Luiza Z. Kurbanova – Junior Research Fellow, Experimental Laboratory Center 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

D. V. Khodakova

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-3753-4463

Darya V. Khodakova – Junior Research Fellow, Experimental Laboratory Center 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

D. O. Kaymakchi

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-7556-9897

Dmitriy O. Kaymakchi – Surgeon, Department of Abdominal Oncology No. 2 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

Ju. N. Lazutin

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-6655-7632

Jurij N. Lazutin – Oncologist, Department of Thoracic Surgery 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

A. N. Shevchenko

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-9468-134X

Alexey N. Shevchenko – MD, PhD, Professor, Head of Oncourological Department 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

O. V. Pandova

National Medical Research Centre for Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-2218-9345

Olga V. Pandova – Junior Research Fellow, Department of Neuro-oncology 

63 14-ya liniya, Rostov-on-Don, 344037

Россия

References

  1. World Health Organization. International Agency for Research on Cancer. GLOBOCAN 2020: Lung [Internet]. 2020 Dec. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf.
  2. Leonetti A, Wever B, Mazzaschi G, Assaraf YG, Rolfo C, Quaini F, Tiseo M, Giovannetti E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist Updat. 2019;46:100644. doi: 10.1016/j.drup.2019.100644.
  3. Xiao W, Hong M. Concurrent vs sequential chemoradiotherapy for patients with advanced non-small-cell lung cancer: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2021;100(11):e21455. doi: 10.1097/MD.0000000000021455.
  4. Каприн АД, Старинский ВВ, Шахзадова АО, ред. Состояние онкологической помощи населению России в 2019 году. М.: МНИОИ им. П.А. Герцена−филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2020. 239 с. [Интернет]. Доступно на: https://glavonco.ru/cancer_register/%D0%9F%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%202019.pdf.
  5. Цыганов ММ, Родионов ЕО, Миллер СВ, Литвяков НВ. Обоснование использования экспрессионных маркеров для персонализации химиотерапии рака легкого. Антибиотики и химиотерапия. 2015;60(9–10):38–45.
  6. Wu LG, Zhou DN, Wang T, Ma JZ, Sui H, Deng WL. The efficacy and safety of PD-1/PD-L1 inhibitors versus chemotherapy in patients with previously treated advanced nonsmall-cell lung cancer: A meta-analysis. Medicine (Baltimore). 2021;100(12):e25145. doi: 10.1097/MD.0000000000025145.
  7. Бурнашева ЕВ, Шатохин ЮВ, Снежко ИВ, Мацуга АА. Поражение почек при противоопухолевой терапии. Нефрология. 2018;22(5):17–24. doi: 10.24884/1561-6274-2018-22-5-17-24.
  8. Coburn JM, Kaplan DL. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug Chem. 2015;26(7):1212–1223. doi: 10.1021/acs.bioconjchem.5b00046.
  9. Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2015;12(1):53–64. doi: 10.1517/17425247.2014.955011.
  10. Максимов АЮ, Лукбанова ЕА, Саяпин ЮА, Гусаков ЕА, Гончарова АС, Лысенко ИБ, Протасова ТП. Противоопухолевая активность алкалоидов трополонового ряда in vitro и in vivo. Современные проблемы науки и образования. 2020;(2) [Интернет]. Доступно на: http://science-education.ru/ru/article/view?id=29722.
  11. Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med. 2021;10(7):2396–2422. doi: 10.1002/cam4.3660.
  12. Банг ЗН, Саяпин ЮА, Лам Х, Дык НД, Комиссаров ВН. Синтез и цитотоксическая активность производных [бензо[b][1,4]оксазепино[7,6,5-de]хинолин-2-ил]-1,3-трополонов. Химия гетероциклических соединений. 2015;51(3):291–294.
  13. Jansen van Vuuren L, Visser HG, SchutteSmith M. Crystal structure of 2-(methyl-amino)-tropone. Acta Crystallogr E Crystallogr Commun. 2019;75(Pt 8):1128–1132. doi: 10.1107/S2056989019009502.
  14. Seo JS, Choi YH, Moon JW, Kim HS, Park SH. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017;18(1):14. doi: 10.1186/s12860-017-0130-3.
  15. Skidmore IF, Whitehouse MW. Biochemical properties of anti-inflammatory drugs. IV. Uncoupling of oxidative phosphorylation by resorcinols, tropolones and diones. Biochem Pharmacol. 1965;14:547–555. doi: 10.1016/0006-2952(65)90227-3.
  16. Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, Kurczab R, Śliwa P, Przybylski P. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019;94(5):1930–1943. doi: 10.1111/cbdd.13583.
  17. Минкин ВИ, Кит ОИ, Гончарова АС, Лукбанова ЕА, Саяпин ЮА, Гусаков ЕА, Туркин ИН, Ситковская АО, Филлипова СЮ, Лейман ИА, Лазутин ЮН, Чубарян АВ, Пащенко ДГ, Тищенко ИС, авторы; ФГАОУ ВО Южный федеральный университет, ФГБУ «НМИЦ онкологии» Минздрава России, патентообладатели. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Пат. RU2741311C1 Рос. Федерация. Опубл. 25.01.2021.
  18. Li LH, Wu P, Lee JY, Li PR, Hsieh WY, Ho CC, Ho CL, Chen WJ, Wang CC, Yen MY, Yang SM, Chen HW. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. doi: 10.1371/journal.pone.0104203.
  19. Трещалина ЕМ, Жукова ОС, Герасимова ГК, Андронова НВ, Гарин АМ. Методические указания по изучению противоопухолевой активности фармакологических веществ. В: Хабриев РУ, ред. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. 2-е изд. М.: Медицина; 2005. c. 637–651.
  20. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, Ma Y, Mao Z, Song H, Chen F. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019;10(4):255. doi: 10.1038/s41419-019-1492-6.
  21. Заборовский AВ, Кокорев AВ, Бродовская ЕП, Фирстов СA, Минаева ОВ, Куликов ОА, Червякова НН, Медвежонков ВЮ. Направленная доставка доксорубицина с помощью экзогенных биосовместимых нановекторов при экспериментальных неоплазиях. Вестник Мордовского университета. 2017;27(1):93–107. doi: 10.15507/0236-2910.027.201701.093-107.
  22. Tu DG, Yu Y, Lee CH, Kuo YL, Lu YC, Tu CW, Chang WW. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett. 2016;11(4):2934–2940. doi: 10.3892/ol.2016.4300.
  23. Chen SM, Wang BY, Lee CH, Lee HT, Li JJ, Hong GC, Hung YC, Chien PJ, Chang CY, Hsu LS, Chang WW. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017;8(44):76057–76068. doi: 10.18632/oncotarget.18648.
  24. Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsukagoshi S, Tashiro T, Tsuruo T. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J Med Chem. 1992;35(2): 267–273. doi: 10.1021/jm00080a010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Lukbanova E.A., Zaikina E.V., Sayapin Y.A., Gusakov E.A., Filippova S.Y., Zlatnik E.Y., Volkova A.V., Kurbanova L.Z., Khodakova D.V., Kaymakchi D.O., Lazutin J.N., Shevchenko A.N., Pandova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies