Assessment of an antitumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone in A-549 tumor cell subcutaneous xenografts
- Authors: Lukbanova E.A.1, Zaikina E.V.1, Sayapin Y.A.2, Gusakov E.A.3, Filippova S.Y.1, Zlatnik E.Y.1, Volkova A.V.1, Kurbanova L.Z.1, Khodakova D.V.1, Kaymakchi D.O.1, Lazutin J.N.1, Shevchenko A.N.1, Pandova O.V.1
-
Affiliations:
- National Medical Research Centre for Oncology
- Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences
- Institute of Physical and Organic Chemistry
- Issue: Vol 49, No 6 (2021)
- Pages: 396-404
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/1461
- DOI: https://doi.org/10.18786/2072-0505-2021-49-021
- ID: 1461
Cite item
Full Text
Abstract
Rationale: Chemotherapy is one of the lung cancer treatment methods. The search for new substances with antitumor effect against malignant lung neoplasms is relevant because of low efficacy and side effects of cytotoxic agents. A promising substance class with various biological activities, including antitumor, includes alkaloids of the tropolone family, such as heptamerous non-benzoid aromatic compounds. 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone has been synthesized in Institute of Physical and Organic Chemistry; it is a new compound belonging to 2-quinoline-2-yl derivatives of 1,3-tropolone.
Aim: To assess the antitumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone on subcutaneous xenografts of A-549 lung tumor cells in immunodeficient Balb/c Nude mice.
Materials and methods: The study included 50 immunodeficient Balb/c Nude mice divided into 4 experimental groups depending on the dosage of the study substance (0.0055, 0.055, 0.55, and 2.75 mg/g); group 5 was the control group. A-549 cells of lung cancer were used as a xenograft. The antitumor effect of tropolone was evaluated by the inhibition of tumor growth and the index of tumor growth. The experiment lasted for 36 days starting from the first administration of the substances.
Results: The mean tumor volumes on day 36 of the experiment in the control group and four experimental groups were 2729.5; 2150.8; 1746.4; 952.3 and 678.9 mm3 , respectively. The indices of tumor growth in groups 1, 2, 3 and 4 were significantly lower than in group 5 (control) starting from days 24, 21, 21 and 15, respectively, and till the end of the experiment. Maximal differences between groups 4 and 5 were observed at days 33 and 36 (by 3.7, p=0.01 and 4.1, p=0.003 times, respectively).
Discussion: The anti-tumor effect of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)- 5,6,7-trichloro-1,3-tropolone demonstrated in the study could be related to various mechanisms. For example, numerous studies have shown that its related compound hinokitiol exerts a cytotoxic effect associated with cessation of the cell cycle, apoptosis induction, DNA damage, and autophagic death of tumor cells.
Conclusion: The study demonstrated significant differences in xenograft volumes in all experimental groups, compared to the control group. In mice, 2.75 mg/g bodyweight was the most effective dosage of the studied compound leading to a slow decrease in tumor growth rates and a decrease in the volumes of subcutaneous xenografts.
About the authors
E. A. Lukbanova
National Medical Research Centre for Oncology
Author for correspondence.
Email: katya.samarskaja@yandex.ru
ORCID iD: 0000-0002-3036-6199
Ekaterina A. Lukbanova – Research Fellow, Experimental Laboratory Center
63 14-ya liniya, Rostov-on-Don, 344037
РоссияE. V. Zaikina
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0003-0088-2990
Ekaterina V. Zaikina – Junior Research Fellow, Experimental Laboratory Center
63 14-ya liniya, Rostov-on-Don, 344037
РоссияYu. A. Sayapin
Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-3180-1762
Yurii A. Sayapin – PhD (in Chem.), Head of Laboratory of Physical Organic Chemistry
41 Chekhova prospekt, Rostov-on-Don, 344006
РоссияE. A. Gusakov
Institute of Physical and Organic Chemistry
Email: fake@neicon.ru
ORCID iD: 0000-0001-7593-1334
Evgeniy A. Gusakov – PhD (in Chem.), Research Fellow
194/2 Stachki prospekt, Rostov-on-Don, 344090
РоссияS. Yu. Filippova
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0002-4558-5896
Svetlana Yu. Filippova – Research Fellow, Cell Technologies Laboratory
63 14-ya liniya, Rostov-on-Don, 344037
РоссияE. Yu. Zlatnik
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0002-1410-122X
Elena Yu. Zlatnik – MD, PhD, Professor, Chief Research Fellow, Laboratory for Immunophenotyping of Tumors
63 14-ya liniya, Rostov-on-Don, 344037
РоссияA. V. Volkova
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0001-7823-3865
Anastasia V. Volkova – Junior Research Fellow, Experimental Laboratory Center
63 14-ya liniya, Rostov-on-Don, 344037
РоссияL. Z. Kurbanova
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0003-3436-1325
Luiza Z. Kurbanova – Junior Research Fellow, Experimental Laboratory Center
63 14-ya liniya, Rostov-on-Don, 344037
РоссияD. V. Khodakova
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0003-3753-4463
Darya V. Khodakova – Junior Research Fellow, Experimental Laboratory Center
63 14-ya liniya, Rostov-on-Don, 344037
РоссияD. O. Kaymakchi
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0002-7556-9897
Dmitriy O. Kaymakchi – Surgeon, Department of Abdominal Oncology No. 2
63 14-ya liniya, Rostov-on-Don, 344037
РоссияJu. N. Lazutin
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0002-6655-7632
Jurij N. Lazutin – Oncologist, Department of Thoracic Surgery
63 14-ya liniya, Rostov-on-Don, 344037
РоссияA. N. Shevchenko
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0002-9468-134X
Alexey N. Shevchenko – MD, PhD, Professor, Head of Oncourological Department
63 14-ya liniya, Rostov-on-Don, 344037
РоссияO. V. Pandova
National Medical Research Centre for Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0003-2218-9345
Olga V. Pandova – Junior Research Fellow, Department of Neuro-oncology
63 14-ya liniya, Rostov-on-Don, 344037
РоссияReferences
- World Health Organization. International Agency for Research on Cancer. GLOBOCAN 2020: Lung [Internet]. 2020 Dec. Available from: https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf.
- Leonetti A, Wever B, Mazzaschi G, Assaraf YG, Rolfo C, Quaini F, Tiseo M, Giovannetti E. Molecular basis and rationale for combining immune checkpoint inhibitors with chemotherapy in non-small cell lung cancer. Drug Resist Updat. 2019;46:100644. doi: 10.1016/j.drup.2019.100644.
- Xiao W, Hong M. Concurrent vs sequential chemoradiotherapy for patients with advanced non-small-cell lung cancer: A meta-analysis of randomized controlled trials. Medicine (Baltimore). 2021;100(11):e21455. doi: 10.1097/MD.0000000000021455.
- Каприн АД, Старинский ВВ, Шахзадова АО, ред. Состояние онкологической помощи населению России в 2019 году. М.: МНИОИ им. П.А. Герцена−филиал ФГБУ «НМИЦ радиологии» Минздрава России; 2020. 239 с. [Интернет]. Доступно на: https://glavonco.ru/cancer_register/%D0%9F%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%202019.pdf.
- Цыганов ММ, Родионов ЕО, Миллер СВ, Литвяков НВ. Обоснование использования экспрессионных маркеров для персонализации химиотерапии рака легкого. Антибиотики и химиотерапия. 2015;60(9–10):38–45.
- Wu LG, Zhou DN, Wang T, Ma JZ, Sui H, Deng WL. The efficacy and safety of PD-1/PD-L1 inhibitors versus chemotherapy in patients with previously treated advanced nonsmall-cell lung cancer: A meta-analysis. Medicine (Baltimore). 2021;100(12):e25145. doi: 10.1097/MD.0000000000025145.
- Бурнашева ЕВ, Шатохин ЮВ, Снежко ИВ, Мацуга АА. Поражение почек при противоопухолевой терапии. Нефрология. 2018;22(5):17–24. doi: 10.24884/1561-6274-2018-22-5-17-24.
- Coburn JM, Kaplan DL. Engineering biomaterial-drug conjugates for local and sustained chemotherapeutic delivery. Bioconjug Chem. 2015;26(7):1212–1223. doi: 10.1021/acs.bioconjchem.5b00046.
- Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2015;12(1):53–64. doi: 10.1517/17425247.2014.955011.
- Максимов АЮ, Лукбанова ЕА, Саяпин ЮА, Гусаков ЕА, Гончарова АС, Лысенко ИБ, Протасова ТП. Противоопухолевая активность алкалоидов трополонового ряда in vitro и in vivo. Современные проблемы науки и образования. 2020;(2) [Интернет]. Доступно на: http://science-education.ru/ru/article/view?id=29722.
- Wen T, Song L, Hua S. Perspectives and controversies regarding the use of natural products for the treatment of lung cancer. Cancer Med. 2021;10(7):2396–2422. doi: 10.1002/cam4.3660.
- Банг ЗН, Саяпин ЮА, Лам Х, Дык НД, Комиссаров ВН. Синтез и цитотоксическая активность производных [бензо[b][1,4]оксазепино[7,6,5-de]хинолин-2-ил]-1,3-трополонов. Химия гетероциклических соединений. 2015;51(3):291–294.
- Jansen van Vuuren L, Visser HG, SchutteSmith M. Crystal structure of 2-(methyl-amino)-tropone. Acta Crystallogr E Crystallogr Commun. 2019;75(Pt 8):1128–1132. doi: 10.1107/S2056989019009502.
- Seo JS, Choi YH, Moon JW, Kim HS, Park SH. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017;18(1):14. doi: 10.1186/s12860-017-0130-3.
- Skidmore IF, Whitehouse MW. Biochemical properties of anti-inflammatory drugs. IV. Uncoupling of oxidative phosphorylation by resorcinols, tropolones and diones. Biochem Pharmacol. 1965;14:547–555. doi: 10.1016/0006-2952(65)90227-3.
- Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, Kurczab R, Śliwa P, Przybylski P. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019;94(5):1930–1943. doi: 10.1111/cbdd.13583.
- Минкин ВИ, Кит ОИ, Гончарова АС, Лукбанова ЕА, Саяпин ЮА, Гусаков ЕА, Туркин ИН, Ситковская АО, Филлипова СЮ, Лейман ИА, Лазутин ЮН, Чубарян АВ, Пащенко ДГ, Тищенко ИС, авторы; ФГАОУ ВО Южный федеральный университет, ФГБУ «НМИЦ онкологии» Минздрава России, патентообладатели. Средство, обладающее цитотоксической активностью в отношении культуры клеток немелкоклеточного рака легких А 549. Пат. RU2741311C1 Рос. Федерация. Опубл. 25.01.2021.
- Li LH, Wu P, Lee JY, Li PR, Hsieh WY, Ho CC, Ho CL, Chen WJ, Wang CC, Yen MY, Yang SM, Chen HW. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. doi: 10.1371/journal.pone.0104203.
- Трещалина ЕМ, Жукова ОС, Герасимова ГК, Андронова НВ, Гарин АМ. Методические указания по изучению противоопухолевой активности фармакологических веществ. В: Хабриев РУ, ред. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. 2-е изд. М.: Медицина; 2005. c. 637–651.
- Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, Ma Y, Mao Z, Song H, Chen F. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019;10(4):255. doi: 10.1038/s41419-019-1492-6.
- Заборовский AВ, Кокорев AВ, Бродовская ЕП, Фирстов СA, Минаева ОВ, Куликов ОА, Червякова НН, Медвежонков ВЮ. Направленная доставка доксорубицина с помощью экзогенных биосовместимых нановекторов при экспериментальных неоплазиях. Вестник Мордовского университета. 2017;27(1):93–107. doi: 10.15507/0236-2910.027.201701.093-107.
- Tu DG, Yu Y, Lee CH, Kuo YL, Lu YC, Tu CW, Chang WW. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett. 2016;11(4):2934–2940. doi: 10.3892/ol.2016.4300.
- Chen SM, Wang BY, Lee CH, Lee HT, Li JJ, Hong GC, Hung YC, Chien PJ, Chang CY, Hsu LS, Chang WW. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017;8(44):76057–76068. doi: 10.18632/oncotarget.18648.
- Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsukagoshi S, Tashiro T, Tsuruo T. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J Med Chem. 1992;35(2): 267–273. doi: 10.1021/jm00080a010.