The prognostic role of aberrant copy number of DDB1, PRPF19, CDKN1B, с-Myc genes in ovarian cancer patients

Cover Page

Cite item


Rationale: Ovarian cancer is the leading death cause in gynecological malignancies. More than 70% of the patients are diagnosed with progressing disease extending to outside the true pelvis. The 5-year survival of ovarian cancer patients remains low (about 47%) due to frequent relapses and drug resistance. Identification of markers for early diagnosis and relapse prediction could improve the outcomes of the disease.

Aim: To assess relative copy number of cancer-associated genetic loci c-Myc, CDK12, CDKN1B, PRPF19, ERBB2, DDB1, GAB2, COL6A3 in the tumor cells of ovarian cancer, in order to identify potential prognostic oncomarkers in ovarian cancer patients.

Materials and methods: The study included 50 women aged 27 to 70 years with ovarian cancer T1-3cN0-1M0-1, Gr. 2 (stages I—IV), who received their elective treatment in the National Medical Research Centre for Oncology in 2015 to 2019. The study was based on samples of genomic DNA from paraffinized blocks of tumor and “healthy” tissues. Relative copy numbers of 8 genetic loci (c-Myc, CDK12, CDKN1B, PRPF19, ERBB2, DDB1, GAB2, COL6A3) was assessed by RT-qPCR technique. Relative copy quantitation of a genetic locus was calculated as 2-ΔCt. The dose of the locus studied was considered equal to diploid set (2n) if RCQtumor/healthy was about 1. If RCQtumor/healthy was > 1.5 or < 0.5, then the locus dose was considered increased (≥ 3n) or decreased (≤ 1n), respectively.

Results: For all genetic loci, an increase of relative copy quantitation in the ovarian tumor cells was observed compared to that in “healthy” tissues. There was a significant (р<0.05) aberrant copy quantitation of 4 genes: c-Myc (р = 0.001), DDB1 (р = 0.002), PRPF19 (р = 0.0001), and CDKN1B (р = 0.001). We identified differential thresholds for these genes that made it possible to predict an unfavorable disease course in the patients (р < 0.05). The strongest association with the risk of adverse outcomes was found for increased copy number of PRPF19 (odds ratio (OR) 7.3; р = 0.0001) and c-Myc (OR 6.8; р = 0.001).

Conclusion: In this study, we determined the prognostic value of 4 oncogenic drivers, namely, DDB1, PRPF19, CDKN1B, and с-Myc, whose increased copy number was associated with an adverse disease prognosis in ovarian cancer patients.

About the authors

E. V. Verenikina

National Medical Research Centre for Oncology

ORCID iD: 0000-0002-1084-5176

Ekaterina V. Verenikina - MD, PhD, Head of Department of Oncogynecology.

63 14-ya liniya, Rostov-on-Don, 344037.

Russian Federation

N. A. Petrusenko

National Medical Research Centre for Oncology

Author for correspondence.
ORCID iD: 0000-0001-7919-6111

Natalia A. Petrusenko - Junior Research Fellow, Laboratory of Molecular Oncology.

63 14-ya liniya, Rostov-on-Don, 344037.

Tel.: +7 (863) 200 10 00, ext. 472.

Russian Federation

M. M. Kecheryukova

National Medical Research Centre for Oncology

ORCID iD: 0000-0002-6131-8560

Madina M. Kecheryukova - Oncologist, Department of Oncogynecology.

63 14-ya liniya, Rostov-on-Don, 344037.

Russian Federation


  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7-34. doi: 10.3322/caac.21551.
  2. Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease. Essays Biochem. 2018;62(5):643-723. doi: 10.1042/EBC20170053. Erratum in: Essays Biochem. 2020;64(4):681.
  3. Zeng M, Kwiatkowski NP, Zhang T, Nabet B, Xu M, Liang Y, Quan C, Wang J, Hao M, Palakurthi S, Zhou S, Zeng Q, Kirschmeier PT, Meghani K, Leggett AL, Qi J, Shapiro GI, Liu JF, Matulonis UA, Lin CY, Konstantinopoulos PA, Gray NS. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. Elife. 2018;7:e39030. doi: 10.7554/eLife.39030.
  4. Despierre E, Moisse M, Yesilyurt B, Sehouli J, Braicu I, Mahner S, Castillo-Tong DC, Zeillinger R, Lambrechts S, Leunen K, Amant F, Moerman P, Lambrechts D, Vergote I. Somatic copy number alterations predict response to platinum therapy in epithelial ovarian cancer. Gynecol Oncol. 2014;135(3):415-422. doi: 10.1016/j.ygyno.2014.09.014.
  5. Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM, Eldridge M, Sie D, Lewsley LA, Hanif A, Wilson C, Dowson S, Glasspool RM, Lockley M, Brockbank E, Montes A, Walther A, Sundar S, Edmondson R, Hall GD, Clamp A, Gourley C, Hall M, Fotopoulou C, Gabra H, Paul J, Supernat A, Millan D, Hoyle A, Bryson G, Nourse C, Mincarelli L, Sanchez LN, Yl-stra B, Jimenez-Linan M, Moore L, Hofmann O, Markowetz F, McNeish IA, Brenton JD. Copy number signatures and mutational processes in ovarian carcinoma. Nat Genet. 2018;50(9): 1262-1270. doi: 10.1038/s41588-018-0179-8.
  6. Li L, Bai H, Yang J, Cao D, Shen K. Genome-wide DNA copy number analysis in clonally expanded human ovarian cancer cells with distinct invasive/migratory capacities. Oncotarget. 2017;8(9):15136-15148. doi: 10.18632/onco-target.14767.
  7. Петрусенко НА, Никитина ВП, Спиридонова ДА, Кечерюкова ММ. Изменение копийности генов в злокачественных опухолях шейки матки с эндофитной и экзофитной формами роста. Современные проблемы науки и образования. 2019;(3):173.
  8. Колесников ЕН, Максимов АЮ, Кит ОИ, Кутилин ДС. Зависимость общей и без-рецидивной выживаемости больных от молекулярно-генетического подтипа плоскоклеточного рака пищевода. Вопросы онкологии. 2019;65(5):691-700.
  9. Кит ОИ, Водолажский ДИ, Кутилин ДС, Гудуева ЕН. Изменение копийности генетических локусов при раке желудка. Молекулярная биология. 2015;49(4):658. doi: 10.7868/S0026898415040096.
  10. Водолажский ДИ, Тимошкина НН, Маслов АА, Колесников ЕН, Татимов МЗ. Копийность 17-ти генетических локусов у пациентов с диагнозом аденокарцинома желудка. Современные проблемы науки и образования. 2017;(3):12.
  11. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis. 2014;5(5):e1257. doi: 10.1038/cddis.2013.428.
  12. Marechal A, Li JM, Ji XY, Wu CS, Yazinski SA, Nguyen HD, Liu S, Jimenez AE, Jin J, Zou L. PRP19 transforms into a sensor of RPA-ssD-NA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell. 2014;53(2):235-246. doi: 10.1016/j.mol-cel.2013.11.002.
  13. Zhou J, Wang W, Xie Y, Zhao Y, Chen X, Xu W, Wang Y, Guan Z. Proteomics-Based Identification and Analysis of Proteins Associated with Helicobacter pylori in Gastric Cancer. PLoS One. 2016;11(1):e0146521. doi: 10.1371/journal.pone.0146521.
  14. Yin J, Wang L, Zhu JM, Yu Q, Xue RY, Fang Y, Zhang YA, Chen YJ, Liu TT, Dong L, Shen XZ. Prp19 facilitates invasion of hepatocellular carcinoma via p38 mitogen-activated protein kinase/twist1 pathway. Oncotarget. 2016;7(16): 21939-21951. doi: 10.18632/oncotarget.7877.
  15. Lu Y, Gao K, Zhang M, Zhou A, Zhou X, Guan Z, Shi X, Ge S. Genetic Association Between CDKN1B rs2066827 Polymorphism and Susceptibility to Cancer. Medicine (Baltimore). 2015;94(46):e1217. doi: 10.1097/MD.0000000000001217.
  16. Gyorffy B, Lanczky A, Szallasi Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19(2):197-208. doi: 10.1530/ERC-11-0329.
  17. Li H, Liu J, Cao W, Xiao X, Liang L, Liu-Smith F, Wang W, Liu H, Zhou P, Ouyang R, Yuan Z, Liu J, Ye M, Zhang B. C-myc/miR-150/EPG5 axis mediated dysfunction of autophagy promotes development of non-small cell lung cancer. Theranostics. 2019;9(18):5134-5148. doi: 10.7150/thno.34887.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 Verenikina E.V., Petrusenko N.A., Kecheryukova M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies