Robotic mechanotherapy: the possibility to use an exoskeleton for lower limb rehabilitation in patients with multiple sclerosis and impaired walking function

Cover Page


Cite item

Full Text

Abstract

Background: Robotic mechanotherapy is considered as a promising area of physical rehabilitation of multiple sclerosis patients, while it ensures high training efficacy. Aim: To study the effect of physical training using with the ExoAtlet exoskeleton for lower extremities the functioning of patients with multiple sclerosis. Materials and methods: This was a prospective, open, uncontrolled, single center study. The rehabilitation course with the ExoAtlet exoskeleton included 43 patients (14 male and 29 female, aged from 28 to 59 years, mean age 43,5 ± 9,12 years) with remitting multiple sclerosis in remission (RMS-R) (n = 20) and secondary progressive course (VPRS) (n = 23), with the EDSS scores from 3 to 8. One of the inclusion criteria was the presence of motor paresis of the lower extremities. Training with the ExoAtlet exoskeleton was performed 5 days a week for two weeks. The neurological deficits and functioning were assessed with the Kurtzke expanded disability status scale (EDSS), the multiple sclerosis functional composite (MSFC) test, including the assessment of walking (Timed 25 Footwalk), of upper limb functions (9-Hole PegTest, 9-HPT), and of mental functioning (Symbol Digit Modalities Test, SDMT) before and after the rehabilitation course. Cognitive functions were assessed by the Montreal Cognitive Assessment (MoCA) scale. Results: The rehabilitation course resulted in a significant decrease of neurological deficiency by EDSS (by 0.26 score, 5%, p < 0.001). The MSFC test showed an improvement in all subtests: SDMT by 2 points, or 4.9% (p = 0.018), Timed 25-Footwalk by 3.2 seconds, or 19.6% (p < 0.001), 9-HPT for the dominant hand by 1.6 seconds, or 5% (p = 0.004), and for the non-dominant hand by 2.1 seconds, or 6.2% (p = 0.006). The improvement in the MoCA test after the rehabilitation course was 1.6 points, or 6% (p < 0.001). Conclusion: The study confirmed the positive effect of the exoskeleton in the lower extremities, such as restoration of the walking function in multiple sclerosis patients. There was a positive trend towards restoring of hand motor skills and cognitive functions.

About the authors

A. A. Gevorkyan

Moscow Regional Research and Clinical Institute (MONIKI)

Author for correspondence.
Email: gevarl@yandex.ru

Armen A. Gevorkyan – MD, Neurologist, Department of Neurology.

61/2–10 Shchepkina ul., Moscow, 129110
Tel.: +7 (916) 876 41 04 

Russian Federation

S. V. Kotov

Moscow Regional Research and Clinical Institute (MONIKI)

Email: kotovsv@yandex.ru
ORCID iD: 0000-0002-8706-7317

Sergey V. Kotov – MD, PhD, Professor, Head of the Division of Therapy, Head of the Chair of Neurology, Postgraduate Training Faculty.

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

V. Yu. Lizhdvoy

Moscow Regional Research and Clinical Institute (MONIKI)

Email: lijdvoy@mail.ru
ORCID iD: 0000-0003-0367-8282

Victoria Yu. Lizhdvoy – MD, PhD, Senior Research Fellow, Department of Neurology.

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

References

  1. Cree BA, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E, Gelfand JM, Goodin DS, Graves J, Green AJ, Mowry E, Okuda DT, Pelletier D, von Büdingen HC, Zamvil SS, Agrawal A, Caillier S, Ciocca C, Gomez R, Kanner R, Lincoln R, Lizee A, Qualley P, Santaniello A, Suleiman L, Bucci M, Panara V, Papinutto N, Stern WA, Zhu AH, Cutter GR, Baranzini S, Henry RG, Hauser SL. Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol. 2016;80(4):499–510. doi: 10.1002/ana.24747.
  2. Heesen C, Böhm J, Reich C, Kasper J, Goebel M, Gold SM. Patient perception of bodily functions in multiple sclerosis: gait and visual function are the most valuable. Mult Scler. 2008;14(7): 988–91. doi: 10.1177/1352458508088916.
  3. Klaren RE, Motl RW, Dlugonski D, Sandroff BM, Pilutti LA. Objectively quantified physical activity in persons with multiple sclerosis. Arch Phys Med Rehabil. 2013;94(12):2342–8. doi: 10.1016/j.apmr.2013.07.011.
  4. Ploughman M. A new era of multiple sclerosis rehabilitation: lessons from stroke. Lancet Neurol. 2017;16(10):768–9. doi: 10.1016/S1474-4422(17)30301-0.
  5. Hughes AJ, Dunn KM, Chaffee T. Sleep Disturbance and Cognitive Dysfunction in Multiple Sclerosis: a Systematic Review. Curr Neurol Neurosci Rep. 2018;18(1):2. doi: 10.1007/s11910-018-0809-7.
  6. Boeschoten RE, Braamse AMJ, Beekman ATF, Cuijpers P, van Oppen P, Dekker J, Uitdehaag BMJ. Prevalence of depression and anxiety in Multiple Sclerosis: A systematic review and meta-analysis. J Neurol Sci. 2017;372:331–41. doi: 10.1016/j.jns.2016.11.067.
  7. Razazian N, Yavari Z, Farnia V, Azizi A, Kordavani L, Bahmani DS, Holsboer-Trachsler E, Brand S. Exercising Impacts on Fatigue, Depression, and Paresthesia in Female Patients with Multiple Sclerosis. Med Sci Sports Exerc. 2016;48(5):796–803. doi: 10.1249/MSS.0000000000000834.
  8. Motl RW, McAuley E, Snook EM. Physical activity and multiple sclerosis: a meta-analysis. Mult Scler. 2005;11(4):459–63. doi: 10.1191/1352458505ms1188oa.
  9. Lai B, Young HJ, Bickel CS, Motl RW, Rimmer JH. Current Trends in Exercise Intervention Research, Technology, and Behavioral Change Strategies for People With Disabilities: A Scoping Review. Am J Phys Med Rehabil. 2017;96(10):748–61. doi: 10.1097/PHM.0000000000000743.
  10. Sandroff BM, Klaren RE, Motl RW. Relationships among physical inactivity, deconditioning, and walking impairment in persons with multiple sclerosis. J Neurol Phys Ther. 2015;39(2): 103–10. doi: 10.1097/NPT.0000000000000087.
  11. Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015;96(7):1339–48.e7. doi: 10.1016/j.apmr.2015.02.011.
  12. Chang WH, Kim YH. Robot-assisted Therapy in Stroke Rehabilitation. J Stroke. 2013;15(3): 174–81. doi: 10.5853/jos.2013.15.3.174.
  13. Chen G, Chan CK, Guo Z, Yu H. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Crit Rev Biomed Eng. 2013;41(4–5):343–63. doi: 10.1615/critrevbiomedeng.2014010453.
  14. Xie X, Sun H, Zeng Q, Lu P, Zhao Y, Fan T, Huang G. Do patients with multiple sclerosis derive more benefit from robot-assisted gait training compared with conventional walking therapy on motor function? A meta-analysis. Front Neurol. 2017;8:260. doi: 10.3389/fneur.2017.00260.
  15. Sattelmayer M, Chevalley O, Steuri R, Hilfiker R. Over-ground walking or robot-assisted gait training in people with multiple sclerosis: does the effect depend on baseline walking speed and disease related disabilities? A systematic review and meta-regression. BMC Neurol. 2019;19(1):93. doi: 10.1186/s12883-019-1321-7.
  16. Ansari NN, Naghdi S, Arab TK, Jalaie S. The interrater and intrarater reliability of the Modified Ashworth Scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation. 2008;23(3):231–7.
  17. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366.
  18. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–52. doi: 10.1212/wnl.33.11.1444.
  19. Fischer JS, Rudick RA, Cutter GR, Reingold SC. The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler. 1999;5(4):244–50. doi: 10.1177/135245859900500409.
  20. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. doi: 10.1111/j.15325415.2005.53221.x.
  21. Котов СВ, Лиждвой ВЮ, Секирин АБ, Петрушанская КА, Письменная ЕВ. Эффективность применения экзоскелета ExoAtlet для восстановления функции ходьбы у больных рассеянным склерозом. Журнал неврологии и психиатрии имени С.С. Корсакова. 2017;117(10 Вып. 2):41–7. doi: 10.17116/jnevro201711710241-47.
  22. Шевченко ЮЛ, ред. Применение экзоскелета «ЭкзоАтлет» в клинической нейрореабилитации. М.: НМХЦ им. Н.И. Пирогова; 2016.
  23. Willingham TB, Melbourn J, Moldavskiy M, McCully KK, Backus D. Effects of treadmill training on muscle oxidative capacity and endurance in people with multiple sclerosis with significant walking limitations. Int J MS Care. 2019;21(4):166–72. doi: 10.7224/15372073.2018-021.
  24. Vodovnik L, Long C 2 nd , Reswick JB, Lippay A, Starbuck D. Myo-electric control of paralyzed muscles. IEEE Trans Biomed Eng. 1965;12(3): 169–72. doi: 10.1109/tbme.1965.4502374.
  25. Vodovnik L, Rebersek S. Information content of myo-control signals for orthotic and prosthetic systems. Arch Phys Med Rehabil. 1974;55(2): 52–6.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Gevorkyan A.A., Kotov S.V., Lizhdvoy V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies