A TECHNIQUE OF MULTIDETECTOR COMPUTED TOMOGRAPHY FOR OPTIC CEREBRAL OXYMETRY
- Authors: Tarasov A.P.1,2, Vishnyakova M.V.3, Ivlieva A.L.3, Davydov D.V.2, Podrez D.V.3, Rogatkin D.A.3, Vishnyakova M.V.3
-
Affiliations:
- Moscow Institute of Physics and Technology, Dolgoprudnyy
- Altmedica Ltd., Moscow
- Moscow Regional Research and Clinical Institute (MONIKI)
- Issue: No 43 (2015)
- Pages: 52-57
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/103
- DOI: https://doi.org/10.18786/2072-0505-2015-43-52-57
- ID: 103
Cite item
Full Text
Abstract
Aim: To assess geometric parameters of the human head based on X-ray computed tomography for construction of the first Russian optical cerebral oxymeter.
Materials and methods: Based on the data obtained by multidetector computed tomography, we retrospectively assessed thickness of the frontal bone squame, adjacent soft tissues and calculated their sum in 100 patients above 50 years of age (50 male and 50 female, mean age 64 ± 8 years). The supraorbital edge of the orbit and the middle line were chosen as the reference points.
Results: The mean frontal squame thickness was6.28 mm (± 1.58) on the right side and6.38 mm (± 1.62) on the left side. The mean thickness of the soft tissues covering the bone at this level was4.39 mm (± 1.21) on the right side and4.41 mm (± 1.22) on the left side. The mean total thickness of the frontal squame bone and soft tissue was11.76 mm (± 2.25) on the right side and11.89 mm (± 2.31) on the left side.
Conclusion: For reliable reproducibility of cerebral oxymetry, geometric characteristics of the area where the sensor will be placed, taking the supraorbital edge and the middle line as reference points. Minimal sums of the mean values and their standard deviations for the frontal bone thickness and soft tissues were measured at the intersection points of3 cm lines perpendicular to these reference points.
About the authors
A. P. Tarasov
Moscow Institute of Physics and Technology, Dolgoprudnyy;Altmedica Ltd., Moscow
Author for correspondence.
Email: tarasov.ap@phystech.edu
Tarasov Andrey P. – Lead Engineer1, 2 ** 9 Institutskiy pereulok, Dolgoprudnyy, Moskovskaya oblast', 141700,Russian Federation. Tel.: +7 (495) 408 45 54. E-mail: tarasov.ap@phystech.edu
РоссияM. V. Jr Vishnyakova
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Vishnyakova Marina V. – PhD, Senior Research Fellow, Department of Roentgenology
* 61/2–15 Shchepkina ul., Moscow, 129110, Russian Federation. Tel.: +7 (495) 631 72 07. E-mail: cherridra@mail.ru
РоссияA. L. Ivlieva
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Ivlieva Aleksandra L. – Junior Research Fellow, Laboratory of Medical and Physics Research
РоссияD. V. Davydov
Altmedica Ltd., Moscow
Email: tarasov.ap@phystech.edu
Davydov Dmitriy V. – Research Fellow, Chief Executive Officer Россия
D. V. Podrez
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Podrez Dmitriy V. – Junior Research Fellow, Department of Roentgenology Россия
D. A. Rogatkin
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Rogatkin Dmitriy A. – DES, Head of Laboratory of Medical and Physics Research Россия
M. V. Vishnyakova
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Vishnyakova Mariya V. – MD, PhD, Head of Department of Roentgenology Россия
References
- Пика ТО, Сафонова ЛП. Расчетные параметры тканевой оксиметрии в медицине критических состояний. Биомедицинская радиоэлектроника. 2012;(10):53–62.
- Шепелюк АН, Клыпа ТВ, Никифоров ЮВ. Церебральная оксиметрия в кардиохирургии. Общая реаниматология. 2012;8(2):67–73.
- Edmonds HL Jr. Detection and treatment of cerebral hypoxia key to avoiding intraoperative brain injuries. J Clin Monit Comput. 2000;16(1):69–74.
- Рогаткин ДА. Физические основы оптической оксиметрии. Медицинская физика. 2012;(2):97–114.
- Fischer GW, Silvay G. Cerebral oximetry in cardiac and major vascular surgery. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2(4):249–56.
- Delpy DT, Cope M. Quantification in tissue near-infrared spectroscopy. Philos Trans R Soc Lond B Biol Sci. 1997;352(1354):649–59. doi: 10.1098/rstb.1997.0046.
- Bakker A, Smith B, Ainslie P, Smith K. Near-infrared spectroscopy. In: Ainslie P, editor. Applied aspects of ultrasonography in humans. Rijeca: InTech; 2012. p. 65–88.
- Thavasothy M, Broadhead M, Elwell C, Peters M, Smith M. A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers. Anaesthesia. 2002;57(10):999–1006. doi: 10.1046/j.1365-2044.2002.02826.x.
- Rogatkin DA. Basic principles of organization of system software for multifunctional noninvasive spectrophotometric diagnostic devices and systems. Biomedical Engineering. 2004;38(2):61–5. doi: 10.1023/B:BIEN.0000035722.72246.bf.
- Тучин ВВ, ред. Оптическая биомедицинская диагностика. В 2 томах. Т. 1. Пер. с англ. М.: Физматлит; 2007. 560 с. 11. Lynnerup N, Astrup JG, Sejrsen B. Thickness of the human cranial diploe in relation to age, sex and general body build. Head Face Med. 2005;1:13. doi: 10.1186/1746-160X-1-13.
- Torimitsu S, Nishida Y, Takano T, Koizumi Y, Makino Y, Yajima D, Hayakawa M, Inokuchi G, Motomura A, Chiba F, Otsuka K, Kobayashi K, Odo Y, Iwase H. Statistical analysis of biomechanical properties of the adult skull and age-related structural changes by sex in a Japanese forensic sample. Forensic Sci Int. 2014;234:185. e1–9. doi: 10.1016/j.forsciint.2013.10.001.
- Lynnerup N. Cranial thickness in relation to age, sex and general body build in a Danish forensic sample. Forensic Sci Int. 2001;117(1–2):45–51.
- Hwang K, Kim JH, Baik SH. The thickness of the skull in Korean adults. J Craniofac Surg. 1999;10(5):395–9.
- Mahinda HAM, Murty OP. Variability in thickness of human skull bones and sternum – An autopsy experience. Journal of Forensic Medicine and Toxicology Year. 2009;26(2):26–31.
- Doshi TL, Kangrga I, Vannucci A. Hyperostosis frontalis interna as a potential source of cerebral oximetry signal interference: A case report. Eur J Anaesthesiol. 2015;32(6):448–50. doi: 10.1097/EJA.0000000000000270.
- Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry. 2002;52(7):679–93.
- Suzuki S, Takasaki S, Ozaki T, Kobayashi Y. A tissue oxygenation monitor using NIR spatially resolved spectroscopy. Proc SPIE. 1999;3579:144–5.
- Boas DA, Franceschini MA, Dunn AK, Strangman G. Noninvasive imaging of cerebral activation with diffuse optical tomography. In: Frosting RD, editor. In vivo optical imaging of brain function. Boca Raton (FL): CRC Press; 2002. p. 193–221.
- Chen B, Benni PB, inventors; Cas Medical Systems, Inc., assignee. Method for spectrophotometric blood oxygenation monitoring. United States patent US 7072701 B2. 2006 July 4.