Comparison of modulation interference microscopy, DNA spectrometry, DNA cytometry, and flow cytofluorimetry in the assessment of phytohemagglutinin-induced activity of human blood lymphocytes

Cover Page


Cite item

Full Text

Abstract

Rationale: The study of the structural particulars and functional state of immune cells and primarily lymphocytes is of great importance for both fundamental and clinical medicine. It requires the development of simple and reliable analytic methods that would allow for fast and effective real-time assessment of cell activity.

Aim: To evaluate the effectiveness of the interference microscopy compared to DNA spectrometry, DNA cytometry, and flow cytometry with an internalized fluorescent label CFSE (carboxyfluorescein succinimidyl ester) in the assessment of PHA-induced proliferation of human blood lymphocytes.

Materials and methods: Phytohemagglutinin (PHA)-induced proliferative activity of blood lymphocytes from 10  healthy volunteers was studied with various methodological strategies. Blast transformation of lymphocytes was induced by their incubation for 5 days with PHA 5 μg/mL. The cell proliferative activity was assessed as follows: 1) by DNA spectrometry at 260/280 nm using Tecan Infinite 200  Pro with a  specialized NanoQuant Plate™; 2)  by cytophotometry followed by cell distribution analysis assessing deoxyribonucleic acid (DNA) content after staining with Felgen's dye with an imaging system based on an Olympus BX41 light microscope with a ProgRes CF camera; 3) by flow cytometry using an internalized fluorescent label CFSE; the analysis was performed with a BD FACS Calibur flow cytometer; 4) by measurement of the lymphocyte interference profile with a  modulation interference microscope MIM-340 (Schwabe, Russia). The functional activity of the nucleus (FAN) was determined and used as a criterion for assessment of the lymphocyte functional state.

Results: Incubation of lymphocytes with PHA led to an increase in the linear size by 22.2±2.8%, a  decrease in phase height by 46.3±4.7% (p=0.019), and an increase in FAN by 75.9±9.4%, vs control (p=0.046). As measured by isolated DNA spectroscopy, PHA stimulation of lymphocytes was associated with an increase in the amount of DNA by  55% vs baseline (409.8±22.3  ng/μL and 264.3±25.0  ng/μL, respectively, p=0.049). Felgen's reaction revealed that the proportion of nuclei containing more than 2n DNA was 2% in the control cells and 14.8% in the PHA-activated lymphocytes, with a  difference between the groups of 12.8%. CFSE staining with subsequent incubation and assessment by flow cytofluorimetry demonstrated an increase in the percentage of proliferating cells from 1.68±0.9% in the control to 55.56±5.6% (p=0.00068) in the mitogen-stimulated sample.

Conclusion: Modulation interference microscopy does not require the sample preparation and demonstrated comparable and even higher effectiveness compared to conventional methods for assessment of lymphocyte activity. At the same time, it allows for evaluation of the lymphocyte functional state in real time in the process of cultivation. This opens ample opportunities for evaluation immune cells for research and diagnostic purposes.

 

About the authors

A. S. Sustretov

Institute for Experimental Medicine and Biotechnology of Samara State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-3021-2130

Aleksey S. Sustretov – Research Fellow, Laboratory of Immunology and Molecular Genetics

20 Gagarina ul., Samara, 443079

Russian Federation

V. V. Bogush

Institute for Experimental Medicine and Biotechnology of Samara State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-7597-449X

Vanda V. Bogush – Research Fellow, Laboratory of Immunology and Molecular Genetics

20 Gagarina ul., Samara, 443079

Russian Federation

O. S. Guseva

Institute for Experimental Medicine and Biotechnology of Samara State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0003-0499-4631

Olga S. Guseva – PhD (in Vet.), Senior Research Fellow, Laboratory of Biochemistry

20 Gagarina ul., Samara, 443079

Russian Federation

P. V. Iliasov

Institute for Experimental Medicine and Biotechnology of Samara State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1532-0272

Pavel V. Iliasov – PhD (in Biol.), Leading Research Fellow, Laboratory of Biochemistry

20 Gagarina ul., Samara, 443079

Russian Federation

L. V. Limareva

Institute for Experimental Medicine and Biotechnology of Samara State Medical University

Author for correspondence.
Email: l.v.limareva@samsmu.ru
ORCID iD: 0000-0003-4529-5896

Larisa V. Limareva – Doctor of Biol. Sci., Associate Professor, Director

20 Gagarina ul., Samara, 443079

Russian Federation

References

  1. Семикина ЕЛ, Родионова ТВ, Закиров РШ, Филянская ЕГ, Маянский НА. Методические возможности оценки активации лимфоцитов in vitro. Иммунология. 2014;35(2):85–88.
  2. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur J Immunol. 2017;47(5):765–779. doi: 10.1002/eji.201646875.
  3. Herzig MC, Delavan CP, Jensen KJ, Cantu C, Montgomery RK, Christy BA, Cap AP, Bynum JA. A streamlined proliferation assay using mixed lymphocytes for evaluation of human mesenchymal stem cell immunomodulation activity. J Immunol Methods. 2021;488:112915. doi: 10.1016/j.jim.2020.112915.
  4. Lee KR, Kyoohyun K, Jung J, Heo J, Cho S, Lee S, Chang G, Jo Y, Park H, Park Y. Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications. Sensors (Basel). 2013;13(4):4170–4191. doi: 10.3390/s130404170.
  5. Гизингер ОА, Левкова ЕА, Савин СЗ. Использование модуляционной интерференционной микроскопии в задачах прикладной иммунологии. Вестник Российского университета дружбы народов. Серия: Медицина. 2020;24(2):168–175. doi: 10.22363/2313-0245-2020-24-2-168-175.
  6. Лопарев АВ, Игнатьев ПС, Индукаев КВ, Осипов ПА, Мазалов ИН, Козырев АВ. Высокоскоростной модуляционный интерференционный микроскоп для медико-биологических исследований. Измерительная техника. 2009;(11):60–64.
  7. Kyselá K, Philimonenko AA, Philimonenko VV, Janácek J, Kahle M, Hozák P. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol. 2005;124(5):347–358. doi: 10.1007/s00418-005-0042-8.
  8. Василенко ИА, Метелин ВБ, Игнатьев ПС, Кардашова ЗЗ, Лифенко РА. Диалог с клеткой: диагностическая real-time технология на основе лазерной интерферометрии. Альманах клинической медицины. 2018;46(8):748–757. doi: 10.18786/2072-0505-2018-46-8-748-757.
  9. Habaza M, Kirschbaum M, Guernth-Marschner C, Dardikman G, Barnea I, Korenstein R, Duschl C, Shaked NT. Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation. Adv Sci (Weinh). 2016;4(2):1600205. doi: 10.1002/advs.201600205.
  10. Гаспарян СА, Попова ОС, Василенко ИА, Хрипунова АА, Метелин ВБ. Оценка фенотипа интерфазных ядер лимфоцитов методом количественного фазового имиджинга (QPI) у пациенток с эндометриоидными кистами яичников. Альманах клинической медицины. 2017;45(2):109–117. doi: 10.18786/2072-0505-2017-45-2-109-117.
  11. Шмаров ДА, Погорелов ВМ, Козинец ГИ. Современные аспекты оценки пролиферации и апоптоза в клинико-лабораторной диагностике (обзор литературы). Клиническая лабораторная диагностика. 2013;(1):36–39.
  12. Vulkov I. [Ultrastructure of the lymphocytic nucleus under the effect of phytohemagglutinin stimulation]. Eksp Med Morfol. 1975;14(2): 65–75. Bulgarian.
  13. Quah BJC, Parish CR. The use of carboxyfluorescein diacetate succinimidyl ester (CFSE) to monitor lymphocyte proliferation. J Vis Exp. 2010;(44):2259. doi: 10.3791/2259.
  14. Azarsiz E, Karaca N, Ergun B, Durmuscan M, Kutukculer N, Aksu G. In vitro T lymphocyte proliferation by carboxyfluorescein diacetate succinimidyl ester method is helpful in diagnosing and managing primary immunodeficiencies. J Clin Lab Anal. 2018;32(1):e22216. doi: 10.1002/jcla.22216.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Sustretov A.S., Bogush V.V., Guseva O.S., Iliasov P.V., Limareva L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies