Evaluation of microRNA profile in cervical epithelium for predicting cervical cancer recurrence

Cover Page


Cite item

Full Text

Abstract

Background: To predict the development and recurrence of cervical cancer (CC), we selected three oncoassociated miRNAs: miRNA-20a, -21, whose overexpression leads to the development of tumors, and -23b, which acts as an oncosuppressor. Aim: To evaluate the microRNA profile in the cervical epithelium for predicting CC recurrence in patients who underwent early treatment.

Materials and methods: In the study of the informativeness of expression included 145 patients with T1a1-T2a1N0M0 CC who were followed up for 2 years after treatment. Expression of microR-NA-20a, -21 and -23b was analyzed in tumor tissue samples.

Results: The risk of recurrence decreased from 1.0 to 0.92 after 1 year of the follow-up, and to 0.84 after 2 years. The initial expression of microRNA-20a and -21 in the cervical epithelium in patients with recurrent CC was 44% and 47% higher, respectively, than in patients without recurrence, while microRNA-23b expression was 46% lower. When initial levels of microRNA-20a and -21 expressions were 1.08 and 1.18, respectively, the risk of CC recurrence during the first two years after the surgery increased by 10.15 and 7.62 times, respectively. MicroRNA-20a expression in cervical epithelium equal to 1.08 was associated with 23% risk, and equal to 1.4 - with 79.7% risk. MicroRNA-21 expression equal to 1.18 was associated with 15% risk of CC recurrence; equal to 1.4 - with 55.5% risk; equal to 1.7 - 94.6%. Logistic regression showed that recurrence risks increased sharply when microRNA-23b expression declined.

Conclusion: We registered higher levels of mi-croRNA-20a and -21 expressions and lower mi-croRNA-23b expression in patients with recurrent CC, compared to favorable course of the disease. An analysis of the expression profiles of micro-RNA-20a, -21 and -23b after CC diagnosis allow prognosis of recurrence risks within 2 years after the tumor removal surgery.

About the authors

A. Yu. Maksimov

National Medical Research Centre for Oncology

Author for correspondence.
Email: onko-sekretar@mail.ru
ORCID iD: 0000-0002-1397-837X

Aleksey Yu. Maksimov - MD, PhD, Professor, Deputy Director.

63 14-ya liniya, Rostov-on-Don, 344037; Tel.: +7 (863) 200 10 00; +7 (863) 300 02 00

Россия

M. Yu. Timoshkova

National Medical Research Centre for Oncology

Email: m-timoshkova@yandex.ru
ORCID iD: 0000-0003-1484-0580

Maria Yu. Timoshkova - MD, Oncologist, Junior Research Fellow, Experimental Laboratory Center.

63 14-ya liniya, Rostov-on-Don, 344037; Tel.: +7 (960) 489 80 80

Россия

E. V. Verenikina

National Medical Research Centre for Oncology

Email: ekat.veren@yandex.ru
ORCID iD: 0000-0002-1084-5176

Ekaterina V. Verenikina - MD, PhD, Head of Department of Oncogynecology.

63 14-ya liniya, Rostov-on-Don, 344037; Tel.: +7 (863) 300 02 00, ext. 380

Россия

E. A. Lukbanova

National Medical Research Centre for Oncology

Email: katya.samarskaja@yandex.ru
ORCID iD: 0000-0002-3036-6199

Ekaterina A. Lukbanova - Biologist, Research Fellow, Experimental Laboratory Center.

163 Azovskaya ul., Azov, Rostov Region, 346783, Tel.: +7 (928) 191 45 99

Россия

M. M. Kecheryukova

Rostov State Medical University

Email: adele09161@mail.ru
ORCID iD: 0000-0002-6131-8560

Madina M. Kecheryukova - Postgraduate Student.

29 Nakhichevanskiy pereulok, Rostov-on-Don, 344022; Tel.: +7 (928) 606 37 63

Россия

References

  1. World Health Organization. International Agency for Research on Cancer. Cancer Today. Estimated age-standardized incidence rates (World) in 2018, worldwide, both sexes, all ages [Internet]. Available from: http://gco.iarc.fr/today/online-analysis-multi-bars?v=2018&-mode=cancer&mode_population.
  2. Чимитдоржиева ТН, Писарева ЛФ, Ляхова НП. Рак шейки матки: заболеваемость и смертность (литературный обзор). Сибирский научный медицинский журнал. 2017;37(4):85-91.
  3. Голева ОП, Тасова ЗБ, Прудникова ОН, Леонов ОВ, Ширинская НВ. О проблеме своевременности выявления злокачественных новообразований шейки матки в Омской области. Здравоохранение Российской Федерации. 2016;60(6):298-302. doi: 10.18821/0044-197Х-2016-60-6-298-302.
  4. Марочко КВ. Чувствительность методов исследования в выявлении цервикальной интраэпителиальной неоплазии 3 степени и рака шейки матки. Фундаментальная и клиническая медицина. 2016;1(2):51-5. [Marochko KV.
  5. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci. 2019;20(24):6249. doi: 10.3390/ijms20246249.
  6. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse tran-scription-PCR (qRT-PCR). Methods. 2010;50(4): 298-301. doi: 10.1016/j.ymeth.2010.01.032.
  7. Кипкеева ФМ, Музаффарова ТА, Никулин МП, Апанович ПВ, Нариманов МН, Малихова ОА, Кушлинский НЕ, Стили-ди ИС, Карпухин АВ. Группа микроРНК в качестве кандидатов в прогностические биомаркеры метастазирования рака желудка. Бюллетень экспериментальной биологии и медицины. 2020;169(1):84-7.
  8. Solayman MH, Langaee T, Patel A, El-Wakeel L, El-Hamamsy M, Badary O, Johnson JA. Identification of Suitable Endogenous Normalizers for qRT-PCR Analysis of Plasma microRNA Expression in Essential Hypertension. Mol Biotechnol. 2016;58(3):179-87. doi: 10.1007/s12033-015-9912-z.
  9. Малек АВ, Берштейн ЛМ, Филатов МВ, Беляев АМ. Система экзосомальных межклеточных коммуникаций и ее роль в процессе метастатической диссеминации. Вопросы онкологии. 2014;60(4):430-7.
  10. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561. doi: 10.1371/journal.pone.0041561.
  11. Yuan H, Mischoulon D, Fava M, Otto MW. Circulating microRNAs as biomarkers for depression: Many candidates, few finalists. J Affect Disord. 2018;233:68-78. doi: 10.1016/j.jad.2017.06.058.
  12. Hasanzadeh M, Movahedi M, Rejali M, Male-ki F, Moetamani-Ahmadi M, Seifi S, Hosseini Z, Khazaei M, Amerizadeh F, Ferns GA, Rezayi M, Avan A. The potential prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer. J Cell Physiol. 2019;234(2):1289-94. doi: 10.1002/jcp.27160.
  13. Yeung CL, Tsang TY, Yau PL, Kwok TT. Human papillomavirus type 16 E6 suppresses micro-RNA-23b expression in human cervical cancer cells through DNA methylation of the host gene C9orf3. Oncotarget. 2017;8(7):12158-73. doi: 10.18632/oncotarget.14555.
  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-8. doi: 10.1006/meth.2001.1262.
  15. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi: 10.1093/nar/29.9.e45.
  16. Fang QY, Deng QF, Luo J, Zhou CC. MiRNA-20a-5p accelerates the proliferation and invasion of non-small cell lung cancer by targeting and downregulating KLF9. Eur Rev Med Pharmacol Sci. 2020;24(5):2548-56. doi: 10.26355/eur-rev_202003_20522.
  17. Karimkhanloo H, Mohammadi-Yeganeh S, Ah-sani Z, Paryan M. Bioinformatics prediction and experimental validation of microRNA-20a targeting Cyclin D1 in hepatocellular carcinoma. Tumour Biol. 2017;39(4):1010428317698361. doi: 10.1177/1010428317698361.
  18. Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P, Wang S. A Pilot Study of Circulating MicroRNA-125b as a Diagnostic and Prognostic Biomarker for Epithelial Ovarian Cancer. Int J Gynecol Cancer. 2017;27(1):3-10. doi: 10.1097/IGC.0000000000000846.
  19. Kang HW, Wang F, Wei Q, Zhao YF, Liu M, Li X, Tang H. miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett. 2012;586(6):897-904. doi: 10.1016/j.febslet.2012.02.020.
  20. Liu AN, Qu HJ, Gong WJ, Xiang JY, Yang MM, Zhang W. LncRNA AWPPH and miRNA-21 regulates cancer cell proliferation and chemosensitivity in triple-negative breast cancer by interacting with each other. J Cell Biochem. 2019;120(9):14860-6. doi: 10.1002/jcb.28747.
  21. Zedan AH, Blavnsfeldt SG, Hansen TF, Nielsen BS, Marcussen N, Pleckaitis M, Osther PJS, S0rensen FB. Heterogeneity of miRNA expression in localized prostate cancer with clinicopathological correlations. PLoS One. 2017;12(6):e0179113. doi: 10.1371/journal.pone.0179113.
  22. Qu K, Zhang X, Lin T, Liu T, Wang Z, Liu S, Zhou L, Wei J, Chang H, Li K, Wang Z, Liu C, Wu Z. Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Sci Rep. 2017;7(1):1692. doi: 10.1038/s41598-017-01904-z.
  23. Ajuyah P, Hill M, Ahadi A, Lu J, Hutvagner G, Tran N. MicroRNA (miRNA)-to-miRNA Regulation of Programmed Cell Death 4 (PDCD4). Mol Cell Biol. 2019;39(18):e00086-19. doi: 10.1128/MCB.00086-19.
  24. Chopjitt P, Pientong C, Bumrungthai S, Kongy-ingyoes B, Ekalaksananan T. Activities of E6 Protein of Human Papillomavirus 16 Asian Variant on miR-21 Up-regulation and Expres sion of Human Immune Response Genes. Asian Pac J Cancer Prev. 2015;16(9):3961-8. doi: 10.7314/apjcp.2015.16.9.3961.
  25. Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Bio-chem. 2019;120(12):19635-46. doi: 10.1002/jcb.29270.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 Maksimov A.Y., Timoshkova M.Y., Verenikina E.V., Lukbanova E.A., Kecheryukova M.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies