THE INFLUENCE OF PHOTOHAEMOTHERAPY ON BLOOD RHEOLOGY IN BRONCHIAL ASTHMA
- Authors: Paleev F.N.1, Ostrovskiy E.I.1, Karandashov V.I.2, Shatokhina S.N.1, Sanina N.P.1, Ryzhkova O.Y.1, Gorbunova E.M.1, Paleev N.R.1
-
Affiliations:
- Moscow Regional Research and Clinical Institute (MONIKI)
- State Research Center for Laser Medicine of the Federal Medical and Biological Agency of the Russian Federation
- Issue: No 43 (2015)
- Pages: 58-65
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/104
- DOI: https://doi.org/10.18786/2072-0505-2015-43-58-65
- ID: 104
Cite item
Full Text
Abstract
Background: Blood rheology abnormalities are recognized as one of the main pathophysiological components of bronchial asthma. Standard medical treatment of bronchial asthma does not exert any substantial effect on blood fluidity.
Aim: To assess efficacy of quantum haemotherapy and its influence on blood rheology in the combination treatment of bronchial asthma.
Materials and methods: Four hundred and eighty patients admitted to our in-patient department with mild (44.5%) and severe (55.5%) exacerbations of persistent moderate asthma, were randomized into two groups: the main group (n = 250), which, along with conventional treatment, received photohaemotherapy with blue (PHB, n = 220) or red (PHR, n = 30) light, and the control group (n = 230), which received conventional treatment for two weeks. PHB (light-emitting diode devise “Solaris”) and PHR (helium neon laser) was performed according to the following regimen: duration of a session 30 minutes, number of sessions, from 5 to 7 with in-between intervals of 2 to 3 days. The degree of erythrocyte deformation, relative membrane charge and relative gradient membrane potential of erythrocytes, total erythrocyte counts, hemoglobin levels, hematocrit, and blood viscosity were assessed at days 1 and 14, as well as after 3 months.
Results: At day 14, the relative gradient membrane potential of erythrocytes decreased to 0.118 ± 0.01 r.u. in the PHB group, to 0.167 ± 0.01 r.u. in the PHR group, and to 0.153 ± 0.01 r.u. in the conventional treatment group. The relative charge of erythrocyte membranes increased to 0.202 ± 0.07, 0.19 ± 0.07 and 0.14 ± 0.07 r.u., the degree of erythrocyte deformation decreased to 1.4 ± 0.1, 1.6 ± 0.1 and 1.9 ± 0.1 scores, the degree of hypoxic anisotropy of the serum decreased to 0.8, 0.9 and 1.2 scores, respectively (in all cases, p < 0.05 for comparison with baseline values). However, a significant difference of all parameters from the normal range persisted (p < 0.001). No significant changes of hemoglobin and total erythrocyte counts were observed during the whole follow up period. At the end of the photohaemotherapy course, blood viscosity in the PHB group decreased to 4.55 ± 0.11 mPa·s (from the baseline value of 5.04 ± 0.13 mPa·s, p < 0.05), and was close to normal range (4.5 ± 0.3 mPa·s). In the conventionally treated group, blood viscosity was not changed (5.41 ± 0.11 mPa·s before treatment and 5.39 ± 0.12 mPa·s thereafter, p > 0.05). At month 3, all patients, despite their clinical well-being, demonstrated a deterioration of the parameters studies. However, only in the conventionally treated group the degree of this deterioration was compatible with parameters registered during an asthma exacerbation.
Conclusion: Blood rheology parameters demonstrated a more rapid and advanced improvement in patients with exacerbations of bronchial asthma, who were treated with the use of photohaemotherapy, compared to those who received conventional treatment only.
About the authors
F. N. Paleev
Moscow Regional Research and Clinical Institute (MONIKI)
Author for correspondence.
Email: cherridra@mail.ru
Paleev Filipp N. – MD, PhD, Professor of theRussianAcademyof Sciences; Director
РоссияE. I. Ostrovskiy
Moscow Regional Research and Clinical Institute (MONIKI)
Email: ostrovskyei@mail.ru
OstrovskiyEvgeniyI.– PhD, Head of the Internal Diseases Department No. 1
* 106 selo Selinskoe, Klinskiy rayon, Moskovskaya oblast', 125464,Russian Federation. Tel.: +7 (916) 741 81 63. E-mail: ostrovskyei@mail.ru
РоссияV. I. Karandashov
State Research Center for Laser Medicine of the Federal Medical and Biological Agency of the Russian Federation
Email: cherridra@mail.ru
Karandashov Vladimir I. – MD, PhD, Professor, Member of theRussianAcademyof Natural Sciences; the Head of Department for Laser Biotechnologies and Clinical Pharmacology
РоссияS. N. Shatokhina
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Shatokhina Svetlana N. – MD, PhD, Head of Clinical Diagnostic Laboratory Россия
N. P. Sanina
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Sanina Natal'ya P. – MD, PhD, Professor, Dean of Postgraduate Training Faculty Россия
O. Yu. Ryzhkova
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Ryzhkova Oksana Yu. – Polyclinic Physician Россия
E. M. Gorbunova
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Gorbunova Elena M. – Junior Research Fellow, Internal Diseases Department, Postgraduate Training Faculty Россия
N. R. Paleev
Moscow Regional Research and Clinical Institute (MONIKI)
Email: cherridra@mail.ru
Paleev Nikolay R. – Member of the Russian Academy of Sciences, MD, PhD, Professor, Chief of the Internal Diseases Department, Postgraduate Training Faculty Россия
References
- Волотовская АВ, Слобожанина ЕИ, Улащик ВС. Мембраноклеточные эффекты лазерного облучения крови. Лазерная медицина. 2005;9(1):4–9.
- Ишина ТИ, Кахновский ИМ, Макарова ОВ, Соломатин АС, Алексеева МЕ. Изучение клинической эффективности внутривенного лазерного облучения крови, плазмафереза и их сочетания у больных бронхиальной астмой. Терапевтический архив. 2001;73(3):15–9.
- Брилль ГЕ, Будник ИА, Гаспарян ЛВ. Влияние излучения полупроводникового лазера на агрегацию кровяных пластинок крыс. Лазерная медицина. 2005;9(1):41–3.
- Ветчинникова ОН. Экстракорпоральное ультрафиолетовое облучение крови. Врач. 1995;(3):3–6.
- Карандашов ВИ, Петухов ЕБ, Зродников ВС. Изменение агрегационной активности тромбоцитов при облучении крови гелий-неоновым лазером и красными светодиодами. Бюллетень экспериментальной биологии и медицины. 1999;128(12):645–8.
- Карандашов ВИ, Петухов ЕБ, Зродников ВС. Клиническое значение высокой вязкости крови и возможности ее снижения методами фотогемотерапии. Клиническая медицина. 1997;75(8):19–23.
- Roggan A, Friebel M, Do Rschel K, Hahn A, Mu Ller G. Optical Properties of Circulating Human Blood in the Wavelength Range 400–2500 nm. J Biomed Opt. 1999;4(1):36–46.
- Фомин СН, Бякин СП, Пиксин ИН, Федосейкин ИВ. Результаты лечения острых деструктивных заболеваний легких и плевры малообъемным дискретным плазмаферезом. Физиология человека. 2005;31(2):96–102.
- Гавришева ИА, Дуткевич ИГ, Плешаков ВГ, Колесник ВС. Влияние разных методов фотогемотерапии на реологические свойства крови у больных с ИБС. Вестник хирургии им. Н.Н. Грекова. 2000;159(2):60–4.
- Марченко АВ. Влияние различных доз длинноволнового УФ-излучения на состав и свойства крови хирургических больных. Вестник хирургии им. Н.Н. Грекова. 1990;144(7):108–10.
- Александрова НП, Островский ЕИ, Карандашов ВИ, Линде ЕВ, Зубов БВ. Влияние оптического излучения синего диапазона на реологические свойства крови у больных бронхиальной астмой. Физиотерапия, бальнеология и реабилитация. 2014;(4):15–8.