In search for an ideal marker of endometrial receptivity: from histology to comprehensive molecular genetics-based approaches

Cover Page


Cite item

Full Text

Abstract

Background: Despite significant improvements in the efficiency of assisted reproductive technologies (ART) for the past 10 years, proportion of unsuccessful cycles still remains significant and can reach up to 40%. Impairment of embryonic implantation is considered as one of the possible causes for low ART efficiency. Implantation failure may be a consequence of a shift in the “window of implantation”, i.e. the period of a cycle when endometrium is most receptive and ready for embryo implantation. Several methods have been developed to evaluate endometrial receptivity, but their accuracy and efficiency are quite different.

Aim: Review and efficiency evaluation of the methods used for endometrial receptivity assessment and the window of implantation determination.

Methods: We performed a comprehensive literature search (September 2018) with the key words “endometrial receptivity”, “endometrial receptivity evaluation”, “implantation window”, “window of implantation”, “pinopodes” from PubMed and E-library (Russian) databases. One hundred and thirty four (134) publications were selected for the analysis, including 101 original papers and 33 literature reviews.

Results: The methods of conventional histology, scanning electronic microscopy, immunohistochemistry, as well as techniques based on the measurement of prostaglandin levels in endometrial fluid and mRNA profiling in an endometrium biopsy sample to assess endometrial receptivity are reviewed. The issue of a search for an ideal endometrial receptivity marker is discussed.

Conclusion: At present, the most efficient and accurate methods to diagnose the window of implantation are those based on the mRNA profile assessment of an endometrial tissue sample. Аnalysis of mRNAs allows not only the accurate diagnosis of endometrial receptivity at the time of biopsy to be determined, but also the window of implantation shift to earlier or later periods to be reliably predicted.

About the authors

M. V. Kibanov

Yauza Medical Center

Author for correspondence.
Email: mkibanov@gmail.com

Mikhail V. Kibanov – PhD (in Biol.), Biologist, Laboratory of Reproductive Genetics

15/1 Volochaevskaya ul., Moscow, 111033

Russian Federation

G. M. Makhmudova

Yauza Medical Center

Email: fake@neicon.ru

Gulnora M. Makhmudova – MD, PhD, Professor, Head Physician, Head of the Reproductive and Gynecology Department  

15/1 Volochaevskaya ul., Moscow, 111033

Russian Federation

Ya. A. Gokhberg

Yauza Medical Center

Email: fake@neicon.ru

Yael A. Gokhberg – Postgraduate Student   

15/1 Volochaevskaya ul., Moscow, 111033

Russian Federation

References

  1. Macklon NS, Geraedts JP, Fauser BC. Conception to ongoing pregnancy: the 'black box' of early pregnancy loss. Hum Reprod Update. 2002;8(4):333–43. doi: 10.1093/humupd/8.4.333.
  2. Lavergne N, Aristizabal J, Zarka V, Erny R, Hedon B. Uterine anomalies and in vitro fertilization: what are the results? Eur J Obstet Gynecol Reprod Biol. 1996;68(1–2):29–34. doi: 10.1016/0301-2115(96)02459-1.
  3. Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC. Recurrent implantation failure: definition and management. Reprod Biomed Online. 2014;28(1):14–38. doi: 10.1016/j.rbmo.2013.08.011.
  4. Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, Kokocinski F, Michel CE, Minasi MG, Greco E. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13. doi: 10.1093/humrep/deu277.
  5. Yang Z, Lin J, Zhang J, Fong WI, Li P, Zhao R, Liu X, Podevin W, Kuang Y, Liu J. Randomized comparison of next-generation sequencing and array comparative genomic hybridization for preimplantation genetic screening: a pilot study. BMC Med Genomics. 2015;8:30. doi: 10.1186/s12920-015-0110-4.
  6. Yang Z, Liu J, Collins GS, Salem SA, Liu X, Lyle SS, Peck AC, Sills ES, Salem RD. Selection of single blastocysts for fresh transfer via standard morphology assessment alone and with array CGH for good prognosis IVF patients: results from a randomized pilot study. Mol Cytogenet. 2012;5(1):24. doi: 10.1186/1755-8166-524.
  7. Harton GL, Munné S, Surrey M, Grifo J, Kaplan B, McCulloh DH, Griffin DK, Wells D; PGD Practitioners Group. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil Steril. 2013;100(6):1695–703. doi: 10.1016/j.fertnstert.2013.07.2002.
  8. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89(1):20–6. doi: 10.1016/j.fertnstert.2006.08.092.
  9. Franasiak J, Forman EJ, Hong KH, Werner MD, Upham KM, Scott RT Jr. Investigating the impact of the timing of blastulation on implantation: active management of embryo-endometrial synchrony increases implantation rates. Fertil Steril. 2013;100(3 Suppl):S97. doi: 10.1016/j.fertnstert.2013.07.1710.
  10. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod Biomed Online. 2014;29(3):286–90. doi: 10.1016/j.rbmo.2014.04.009.
  11. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9. doi: 10.1056/NEJM199906103402304.
  12. Vanrell JA, Balasch J. Luteal phase defects in repeated abortion. Int J Gynaecol Obstet. 1986;24(2):111–5. doi: 10.1016/00207292(86)90004-4.
  13. Shapiro BS, Daneshmand ST, Desai J, Garner FC, Aguirre M, Hudson C. The risk of embryo-endometrium asynchrony increases with maternal age after ovarian stimulation and IVF. Reprod Biomed Online. 2016;33(1):50–5. doi: 10.1016/j.rbmo.2016.04.008.
  14. Fragouli E, Alfarawati S, Spath K, Jaroudi S, Sarasa J, Enciso M, Wells D. The origin and impact of embryonic aneuploidy. Hum Genet. 2013;132(9):1001–13. doi: 10.1007/s00439013-1309-0.
  15. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, Scott RT Jr. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.e1. doi: 10.1016/j.fertnstert.2013.11.004.
  16. Denker HW. Implantation: a cell biological paradox. J Exp Zool. 1993;266(6):541–58. doi: 10.1002/jez.1402660606.
  17. Nikas G. Endometrial receptivity: changes in cell-surface morphology. Semin Reprod Med. 2000;18(3):229–35. doi: 10.1055/s-2000-12561.
  18. Nikas G, Makrigiannakis A, Hovatta O, Jones HW Jr. Surface morphology of the human endometrium. Basic and clinical aspects. Ann N Y Acad Sci. 2000;900:316–24. doi: 10.1111/j.1749-6632.2000.tb06244.x.
  19. Vilella F, Ramirez L, Berlanga O, Martínez S, Alamá P, Meseguer M, Pellicer A, Simón C. PGE2 and PGF2α concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab. 2013;98(10):4123–32. doi: 10.1210/jc.20132205.
  20. Aplin JD, Ruane PT. Embryo-epithelium interactions during implantation at a glance. J Cell Sci. 2017;130(1):15–22. doi: 10.1242/jcs.175943.
  21. Aplin JD, Kimber SJ. Trophoblast-uterine interactions at implantation. Reprod Biol Endocrinol. 2004;2:48. doi: 10.1186/1477-7827-2-48.
  22. Fox C, Morin S, Jeong JW, Scott RT Jr, Lessey BA. Local and systemic factors and implantation: what is the evidence? Fertil Steril. 2016;105(4): 873–84. doi: 10.1016/j.fertnstert.2016.02.018.
  23. Крылова ЮС, Кветной ИМ, Айламазян ЭК. Рецептивность эндометрия: молекулярные механизмы регуляции имплантации. Журнал акушерства и женских болезней. 2013;62(2): 63–74. doi: 10.17816/JOWD62263-74.
  24. Аганезов СС, Аганезова НВ, Мороцкая АВ, Пономаренко КЮ. Рецептивность эндометрия у женщин с нарушениями репродуктивной функции. Журнал акушерства и женских болезней. 2017;66(3): 135–42. doi: 10.17816/JOWD663135-142.
  25. Jones GE. Some newer aspects of the management of infertility. J Am Med Assoc. 1949;141(16):1123–9. doi: 10.1001/jama.1949.02910160013004.
  26. Balasch J, Creus M, Márquez M, Burzaco I, Vanrell JA. The significance of luteal phase deficiency on fertility: a diagnostic and therapeutic approach. Hum Reprod. 1986;1(3):145–7. doi: 10.1093/oxfordjournals.humrep.a136370.
  27. McNeely MJ, Soules MR. The diagnosis of luteal phase deficiency: a critical review. Fertil Steril. 1988;50(1):1–15. doi: 10.1016/S00150282(16)59999-3.
  28. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1(1):3–25. doi: 10.1016/S0015-0282(16)30062-0.
  29. Wentz AC. Endometrial biopsy in the evaluation of infertility. Fertil Steril. 1980;33(2):121–4. doi: 10.1016/S0015-0282(16)44530-9.
  30. Davis OK, Berkeley AS, Naus GJ, Cholst IN, Freedman KS. The incidence of luteal phase defect in normal, fertile women, determined by serial endometrial biopsies. Fertil Steril. 1989;51(4):582–6. doi: 10.1016/S00150282(16)60603-9.
  31. Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, Leppert PC; NICHD National Cooperative Reproductive Medicine Network. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82(5):1264–72. doi: 10.1016/j.fertnstert.2004.03.069.
  32. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6): 731–46. doi: 10.1093/humupd/dml004.
  33. Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81(5):1333– 43. doi: 10.1016/j.fertnstert.2003.11.030.
  34. Myers ER, Silva S, Barnhart K, Groben PA, Richardson MS, Robboy SJ, Leppert P, Coutifaris C; NICHD National Cooperative Reproductive Medicine Network. Interobserver and intraobserver variability in the histological dating of the endometrium in fertile and infertile women. Fertil Steril. 2004;82(5):1278–82. doi: 10.1016/j.fertnstert.2004.04.058.
  35. Practice Committee of the American Society for Reproductive Medicine. Current clinical irrelevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2015;103(4):e27– 32. doi: 10.1016/j.fertnstert.2014.12.128.
  36. Franasiak JM, Holoch KJ, Yuan L, Schammel DP, Young SL, Lessey BA. Prospective assessment of midsecretory endometrial leukemia inhibitor factor expression versus ανβ3 testing in women with unexplained infertility. Fertil Steril. 2014;101(6):1724–31. doi: 10.1016/j.fertnstert.2014.02.027.
  37. Lessey BA, Castelbaum AJ, Sawin SW, Buck CA, Schinnar R, Bilker W, Strom BL. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab. 1994;79(2):643–9. doi: 10.1210/jcem.79.2.7519194.
  38. Meyer WR, Castelbaum AJ, Somkuti S, Sagoskin AW, Doyle M, Harris JE, Lessey BA. Hydrosalpinges adversely affect markers of endometrial receptivity. Hum Reprod. 1997;12(7): 1393–8. doi: 10.1093/humrep/12.7.1393.
  39. Psychoyos A, Mandon P. Study of the surface of the uterine epithelium by scanning electron microscope. Observations in the rat at the 4th and 5th day of pregnancy. C R Acad Sci Hebd Seances Acad Sci D. 1971;272(21):2723–5.
  40. Quinn C, Ryan E, Claessens EA, Greenblatt E, Hawrylyshyn P, Cruickshank B, Hannam T, Dunk C, Casper RF. The presence of pinopodes in the human endometrium does not delineate the implantation window. Fertil Steril. 2007;87(5):1015–21. doi: 10.1016/j.fertnstert.2006.08.101.
  41. Da Broi MG, Rocha CV Jr, Carvalho FM, Martins WP, Ferriani RA, Navarro PA. Ultrastructural evaluation of eutopic endometrium of infertile women with and without endometriosis during the window of implantation: A pilot study. Reprod Sci. 2017;24(10):1469–75. doi: 10.1177/1933719117691142.
  42. Quinn CE, Detmar J, Casper RF. Pinopodes are present in Lif null and Hoxa10 null mice. Fertil Steril. 2007;88(4 Suppl):1021–8. doi: 10.1016/j.fertnstert.2006.11.157.
  43. Quinn CE, Casper RF. Pinopodes: a questionable role in endometrial receptivity. Hum Reprod Update. 2009;15(2):229–36. doi: 10.1093/humupd/dmn052.
  44. Enders AC, Nelson DM. Pinocytotic activity of the uterus of the rat. Am J Anat. 1973;138(3): 277–99. doi: 10.1002/aja.1001380302.
  45. Acosta AA, Elberger L, Borghi M, Calamera JC, Chemes H, Doncel GF, Kliman H, Lema B, Lustig L, Papier S. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil Steril. 2000;73(4): 788–98. doi: 10.1016/S0015-0282(99)00605-6.
  46. Nilsson O. Ultrastructure of mouse uterine surface epithelium under different estrogenic influences. 1. Spayed animals and oestrous animals. J Ultrastruct Res. 1958;1(4):375–96. doi: 10.1016/S0022-5320(58)90009-1.
  47. Johannisson E, Nilsson L. Scanning electron microscopic study of the human endometrium. Fertil Steril. 1972;23(9):613–25. doi: 10.1016/S0015-0282(16)39188-9.
  48. Singh MM, Chauhan SC, Trivedi RN, Maitra SC, Kamboj VP. Correlation of pinopod development on uterine luminal epithelial surface with hormonal events and endometrial sensitivity in rat. Eur J Endocrinol. 1996;135(1): 107–17. doi: 10.1530/eje.0.1350107.
  49. Parr MB, Parr EL. Uterine luminal epithelium: protrusions mediate endocytosis, not apocrine secretion, in the rat. Biol Reprod. 1974;11(2): 220–33. doi: 10.1095/biolreprod11.2.220.
  50. Nilsson O. Ultrastructure of the process of secretion in the rat uterine epithelium at preimplantation. J Ultrastruct Res. 1972;40(5–6): 572–80. doi: 10.1016/S0022-5320(72)80044-3.
  51. Murphy CR. Understanding the apical surface markers of uterine receptivity: pinopods-or uterodomes? Hum Reprod. 2000;15(12):2451– 4. doi: 10.1093/humrep/15.12.2451.
  52. Bentin-Ley U, Sjögren A, Nilsson L, Hamberger L, Larsen JF, Horn T. Presence of uterine pinopodes at the embryo-endometrial interface during human implantation in vitro. Hum Reprod. 1999;14(2):515–20. doi: 10.1093/humrep/14.2.515.
  53. Kabir-Salmani M, Nikzad H, Shiokawa S, Akimoto Y, Iwashita M. Secretory role for human uterodomes (pinopods): secretion of LIF. Mol Hum Reprod. 2005;11(8):553–9. doi: 10.1093/molehr/gah218.
  54. Nikas G. Pinopodes as markers of endometrial receptivity in clinical practice. Hum Reprod. 1999;14 Suppl 2:99–106. doi: 10.1093/humrep/14.suppl_2.99.
  55. Nikas G, Drakakis P, Loutradis D, Mara-Skoufari C, Koumantakis E, Michalas S, Psychoyos A. Uterine pinopodes as markers of the 'nidation window' in cycling women receiving exogenous oestradiol and progesterone. Hum Reprod. 1995;10(5):1208–13. doi: 10.1093/oxfordjournals.humrep.a136120.
  56. Chen C, Yan Q, Liu K, Zhou X, Xian Y, Liang D, Zhao X, Guo X, Quan S. Endometrial receptivity markers in mice stimulated with raloxifene versus clomiphene citrate and natural cycles. Reprod Sci. 2016;23(6):748–55. doi: 10.1177/1933719115616496.
  57. Creus M, Ordi J, Fábregues F, Casamitjana R, Ferrer B, Coll E, Vanrell JA, Balasch J. alphavbeta3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and infertile women. Hum Reprod. 2002;17(9):2279–86. doi: 10.1093/humrep/17.9.2279.
  58. Usadi RS, Murray MJ, Bagnell RC, Fritz MA, Kowalik AI, Meyer WR, Lessey BA. Temporal and morphologic characteristics of pinopod expression across the secretory phase of the endometrial cycle in normally cycling women with proven fertility. Fertil Steril. 2003;79(4): 970–4. doi: 10.1016/S0015-0282(02)04929-4.
  59. Nikas G, Psychoyos A. Uterine pinopodes in peri-implantation human endometrium. Clinical relevance. Ann N Y Acad Sci 1997;816:129–42. doi: 10.1111/j.17496632.1997.tb52136.x.
  60. Adams SM, Gayer N, Terry V, Murphy CR. Manipulation of the follicular phase: Uterodomes and pregnancy – is there a correlation? BMC Pregnancy Childbirth. 2001;1(1):2. doi: 10.1186/1471-2393-1-2.
  61. Nikas G, Makrigiannakis A. Endometrial pinopodes and uterine receptivity. Ann N Y Acad Sci. 2003;997:120–3. doi: 10.1196/annals.1290.042.
  62. Petersen A, Bentin-Ley U, Ravn V, Qvortrup K, Sørensen S, Islin H, Sjögren A, Mosselmann S, Hamberger L. The antiprogesterone Org 31710 inhibits human blastocyst-endometrial interactions in vitro. Fertil Steril. 2005;83 Suppl 1:1255–63. doi: 10.1016/j.fertnstert.2004.08.040.
  63. Parr MB, Parr EL. Endocytosis in the uterine epithelium of the mouse. J Reprod Fertil. 1977;50(1):151–3. doi: 10.1530/jrf.0.0500151.
  64. Parr MB. Relationship of uterine closure to ovarian hormones and endocytosis in the rat. J Reprod Fertil. 1983;68(1):185–8. doi: 10.1530/jrf.0.0680185.
  65. Adams SM, Gayer N, Hosie MJ, Murphy CR. Human uterodomes (pinopods) do not display pinocytotic function. Hum Reprod. 2002;17(8): 1980–6. doi: 10.1093/humrep/17.8.1980.
  66. Aghajanova L, Stavreus-Evers A, Nikas Y, Hovatta O, Landgren BM. Coexpression of pinopodes and leukemia inhibitory factor, as well as its receptor, in human endometrium. Fertil Steril. 2003;79 Suppl 1:808–14. doi: 10.1016/S00150282(02)04830-6.
  67. Xu B, Sun X, Li L, Wu L, Zhang A, Feng Y. Pinopodes, leukemia inhibitory factor, integrin-β3, and mucin-1 expression in the peri-implantation endometrium of women with unexplained recurrent pregnancy loss. Fertil Steril. 2012;98(2):389–95. doi: 10.1016/j.fertnstert.2012.04.032.
  68. Creus M, Ordi J, Fábregues F, Casamitjana R, Carmona F, Cardesa A, Vanrell JA, Balasch J. The effect of different hormone therapies on integrin expression and pinopode formation in the human endometrium: a controlled study. Hum Reprod. 2003;18(4):683–93. doi: 10.1093/humrep/deg177.
  69. Missmer SA, Hankinson SE, Spiegelman D, Barbieri RL, Marshall LM, Hunter DJ. Incidence of laparoscopically confirmed endometriosis by demographic, anthropometric, and lifestyle factors. Am J Epidemiol. 2004;160(8):784–96. doi: 10.1093/aje/kwh275.
  70. Holoch KJ, Lessey BA. Endometriosis and infertility. Clin Obstet Gynecol. 2010;53(2):429–38. doi: 10.1097/GRF.0b013e3181db7d71.
  71. Garcia-Velasco JA, Nikas G, Remohí J, Pellicer A, Simón C. Endometrial receptivity in terms of pinopode expression is not impaired in women with endometriosis in artificially prepared cycles. Fertil Steril. 2001;75(6):1231–3. doi: 10.1016/S0015-0282(01)01774-5.
  72. Ordi J, Creus M, Casamitjana R, Cardesa A, Vanrell JA, Balasch J. Endometrial pinopode and alphavbeta3 integrin expression is not impaired in infertile patients with endometriosis. J Assist Reprod Genet. 2003;20(11):465–73. doi: 10.1023/B:JARG.0000006709.61216.6f.
  73. Ordi J, Creus M, Quintó L, Casamitjana R, Cardesa A, Balasch J. Within-subject between-cycle variability of histological dating, alpha v beta 3 integrin expression, and pinopod formation in the human endometrium. J Clin Endocrinol Metab. 2003;88(5):2119–25. doi: 10.1210/jc.2002-021659.
  74. Kumar S, Zhu LJ, Polihronis M, Cameron ST, Baird DT, Schatz F, Dua A, Ying YK, Bagchi MK, Bagchi IC. Progesterone induces calcitonin gene expression in human endometrium within the putative window of implantation. J Clin Endocrinol Metab. 1998;83(12):4443–50. doi: 10.1210/jcem.83.12.5328.
  75. Zhu LJ, Cullinan-Bove K, Polihronis M, Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation. Endocrinology. 1998;139(9):3923– 34. doi: 10.1210/endo.139.9.6178.
  76. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–84. doi: 10.1172/JCI1057.
  77. Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest. 1992;90(1):188– 95. doi: 10.1172/JCI115835.
  78. Lessey BA, Castelbaum AJ, Buck CA, Lei Y, Yowell CW, Sun J. Further characterization of endometrial integrins during the menstrual cycle and in pregnancy. Fertil Steril. 1994;62(3):497– 506. doi: 10.1016/S0015-0282(16)56937-4.
  79. Thomas K, Thomson A, Wood S, Kingsland C, Vince G, Lewis-Jones I. Endometrial integrin expression in women undergoing in vitro fertilization and the association with subsequent treatment outcome. Fertil Steril. 2003;80(3): 502–7. doi: 10.1016/S0015-0282(03)00792-1.
  80. Tei C, Maruyama T, Kuji N, Miyazaki T, Mikami M, Yoshimura Y. Reduced expression of alphavbeta3 integrin in the endometrium of unexplained infertility patients with recurrent IVF-ET failures: improvement by danazol treatment. J Assist Reprod Genet. 2003;20(1):13–20. doi: 10.1023/A:1021254620888.
  81. Miller PB, Parnell BA, Bushnell G, Tallman N, Forstein DA, Higdon HL 3rd, Kitawaki J, Lessey BA. Endometrial receptivity defects during IVF cycles with and without letrozole. Hum Reprod. 2012;27(3):881–8. doi: 10.1093/humrep/der452.
  82. Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod. 2000;62(5):1285–90. doi: 10.1095/biolreprod62.5.1285.
  83. Yaegashi N, Fujita N, Yajima A, Nakamura M. Menstrual cycle dependent expression of CD44 in normal human endometrium. Hum Pathol. 1995;26(8):862–5. doi: 10.1016/00468177(95)90008-X.
  84. Fukuda MN, Sato T, Nakayama J, Klier G, Mikami M, Aoki D, Nozawa S. Trophinin and tastin, a novel cell adhesion molecule complex with potential involvement in embryo implantation. Genes Dev. 1995;9(10):1199–210. doi: 10.1101/gad.9.10.1199.
  85. MacCalman CD, Furth EE, Omigbodun A, Bronner M, Coutifaris C, Strauss JF 3rd. Regulated expression of cadherin-11 in human epithelial cells: a role for cadherin-11 in trophoblast-endometrium interactions? Dev Dyn. 1996;206(2):201–11. doi: 10.1002/(SICI)1097-0177(199606)206:2<201::AIDAJA9>3.0.CO;2-M.
  86. Rarani FZ, Borhani F, Rashidi B. Endometrial pinopode biomarkers: Molecules and microRNAs. J Cell Physiol. 2018;233(12):9145–58. doi: 10.1002/jcp.26852.
  87. Eun Kwon H, Taylor HS. The role of HOX genes in human implantation. Ann N Y Acad Sci. 2004;1034:1–18. doi: 10.1196/annals.1335.001.
  88. Vitiello D, Kodaman PH, Taylor HS. HOX genes in implantation. Semin Reprod Med. 2007;25(6): 431–6. doi: 10.1055/s-2007-991040.
  89. Князева ЕА, Калинина ЕА, Быстрицкий АА, Алиева КУ, Байрамова ГР. Роль НОХ-генов при заболеваниях репродуктивной системы женщины, ассоциированных с бесплодием. Акушерство и гинекология. 2017;(11):16–22. doi: 10.18565/aig.2017.11.16-22.
  90. Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, Yang ZQ, Kiessling LL, Rosen SD, Fisher SJ. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299(5605):405–8. doi: 10.1126/science.1079546.
  91. Simón C, Gimeno MJ, Mercader A, O'Connor JE, Remohí J, Polan ML, Pellicer A. Embryonic regulation of integrins beta 3, alpha 4, and alpha 1 in human endometrial epithelial cells in vitro. J Clin Endocrinol Metab. 1997;82(8):2607–16. doi: 10.1210/jcem.82.8.4153.
  92. van der Gaast MH, Beier-Hellwig K, Fauser BC, Beier HM, Macklon NS. Endometrial secretion aspiration prior to embryo transfer does not reduce implantation rates. Reprod Biomed Online. 2003;7(1):105–9. doi: 10.1016/S14726483(10)61737-3.
  93. Smith WL, Dewitt DL. Prostaglandin endoperoxide H synthases-1 and -2. Adv Immunol. 1996;62:167–215. doi: 10.1016/S00652776(08)60430-7.
  94. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi: 10.1146/annurev.pharmtox.38.1.97.
  95. Jabbour HN, Sales KJ. Prostaglandin receptor signalling and function in human endometrial pathology. Trends Endocrinol Metab. 2004;15(8):398–404. doi: 10.1016/j.tem.2004.08.006.
  96. Song H, Lim H, Paria BC, Matsumoto H, Swift LL, Morrow J, Bonventre JV, Dey SK. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for 'on-time' embryo implantation that directs subsequent development. Development. 2002;129(12):2879–89.
  97. Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997;91(2):197–208. doi: 10.1016/S0092-8674(00)80402-X.
  98. Milne SA, Perchick GB, Boddy SC, Jabbour HN. Expression, localization, and signaling of PGE(2) and EP2/EP4 receptors in human nonpregnant endometrium across the menstrual cycle. J Clin Endocrinol Metab. 2001;86(9): 4453–9. doi: 10.1210/jcem.86.9.7856.
  99. Milne SA, Jabbour HN. Prostaglandin (PG) F(2alpha) receptor expression and signaling in human endometrium: role of PGF(2alpha) in epithelial cell proliferation. J Clin Endocrinol Metab. 2003;88(4):1825–32. doi: 10.1210/jc.2002-021368.
  100. Battersby S, Critchley HO, de Brum-Fernandes AJ, Jabbour HN. Temporal expression and signalling of prostacyclin receptor in the human endometrium across the menstrual cycle. Reproduction. 2004;127(1):79–86. doi: 10.1530/rep.1.00038.
  101. Achache H, Tsafrir A, Prus D, Reich R, Revel A. Defective endometrial prostaglandin synthesis identified in patients with repeated implantation failure undergoing in vitro fertilization. Fertil Steril. 2010;94(4):1271–8. doi: 10.1016/j.fertnstert.2009.07.1668.
  102. Charnock-Jones DS, Sharkey AM, Fenwick P, Smith SK. Leukaemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time. J Reprod Fertil. 1994;101(2):421–6. doi: 10.1530/jrf.0.1010421.
  103. Vogiagis D, Marsh MM, Fry RC, Salamonsen LA. Leukaemia inhibitory factor in human endometrium throughout the menstrual cycle. J Endocrinol. 1996;148(1):95–102.
  104. Apparao KB, Murray MJ, Fritz MA, Meyer WR, Chambers AF, Truong PR, Lessey BA. Osteopontin and its receptor alphavbeta(3) integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab. 2001;86(10):4991–5000. doi: 10.1210/jcem.86.10.7906.
  105. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7. doi: 10.1126/science.286.5439.531.
  106. Bloom G, Yang IV, Boulware D, Kwong KY, Coppola D, Eschrich S, Quackenbush J, Yeatman TJ. Multi-platform, multi-site, microarray-based human tumor classification. Am J Pathol. 2004;164(1):9–16. doi: 10.1016/S00029440(10)63090-8.
  107. Eschrich S, Yang I, Bloom G, Kwong KY, Boulware D, Cantor A, Coppola D, Kruhøffer M, Aaltonen L, Orntoft TF, Quackenbush J, Yeatman TJ. Molecular staging for survival prediction of colorectal cancer patients. J Clin Oncol. 2005;23(15):3526–35. doi: 10.1200/JCO.2005.00.695.
  108. Quackenbush J. Microarray analysis and tumor classification. N Engl J Med. 2006;354(23): 2463–72. doi: 10.1056/NEJMra042342.
  109. Kao LC, Tulac S, Lobo S, Imani B, Yang JP, Germeyer A, Osteen K, Taylor RN, Lessey BA, Giudice LC. Global gene profiling in human endometrium during the window of implantation. Endocrinology. 2002;143(6):2119–38. doi: 10.1210/endo.143.6.8885.
  110. Talbi S, Hamilton AE, Vo KC, Tulac S, Overgaard MT, Dosiou C, Le Shay N, Nezhat CN, Kempson R, Lessey BA, Nayak NR, Giudice LC. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147(3):1097–121. doi: 10.1210/en.20051076.
  111. Savaris RF, Groll JM, Young SL, DeMayo FJ, Jeong JW, Hamilton AE, Giudice LC, Lessey BA. Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles. J Clin Endocrinol Metab. 2011;96(6):1737–46. doi: 10.1210/jc.2010-2600.
  112. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, Lessey BA, Giudice LC. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–26. doi: 10.1210/en.2006-1692.
  113. Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, Osteen K, Lessey BA, Giudice LC. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology. 2003;144(7):2870–81. doi: 10.1210/en.20030043.
  114. Tamaresis JS, Irwin JC, Goldfien GA, Rabban JT, Burney RO, Nezhat C, DePaolo LV, Giudice LC. Molecular classification of endometriosis and disease stage using high-dimensional genomic data. Endocrinology. 2014;155(12):4986–99. doi: 10.1210/en.2014-1490.
  115. Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, Esteban FJ, Alamá P, Pellicer A, Simón C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60, 60.e1– 15. doi: 10.1016/j.fertnstert.2010.04.063.
  116. Carson DD, Lagow E, Thathiah A, Al-Shami R, Farach-Carson MC, Vernon M, Yuan L, Fritz MA, Lessey B. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol Hum Reprod. 2002;8(9):871–9. doi: 10.1093/molehr/8.9.871.
  117. Riesewijk A, Martín J, van Os R, Horcajadas JA, Polman J, Pellicer A, Mosselman S, Simón C. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol Hum Reprod. 2003;9(5):253–64. doi: 10.1093/molehr/gag037.
  118. Blesa D, Ruiz-Alonso M, Simón C. Clinical management of endometrial receptivity. Semin Reprod Med. 2014;32(5):410–3. doi: 10.1055/s0034-1376360.
  119. Ruiz-Alonso M, Galindo N, Pellicer A, Simón C. What a difference two days make: "personalized" embryo transfer (pET) paradigm: a case report and pilot study. Hum Reprod. 2014;29(6):1244–7. doi: 10.1093/humrep/deu070.
  120. Díaz-Gimeno P, Ruiz-Alonso M, Blesa D, Bosch N, Martínez-Conejero JA, Alamá P, Garrido N, Pellicer A, Simón C. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril. 2013;99(2):508–17. doi: 10.1016/j.fertnstert.2012.09.046.
  121. Mirkin S, Arslan M, Churikov D, Corica A, Diaz JI, Williams S, Bocca S, Oehninger S. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum Reprod. 2005;20(8):2104–17. doi: 10.1093/humrep/dei051.
  122. Horcajadas JA, Pellicer A, Simón C. Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum Reprod Update. 2007;13(1):77–86. doi: 10.1093/humupd/dml046.
  123. Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, Simón C. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005;11(3):195–205. doi: 10.1093/molehr/gah150.
  124. Horcajadas JA, Sharkey AM, Catalano RD, Sherwin JR, Domínguez F, Burgos LA, Castro A, Peraza MR, Pellicer A, Simón C. Effect of an intrauterine device on the gene expression profile of the endometrium. J Clin Endocrinol Metab. 2006;91(8):3199–207. doi: 10.1210/jc.20060430.
  125. Arimoto T, Katagiri T, Oda K, Tsunoda T, Yasugi T, Osuga Y, Yoshikawa H, Nishii O, Yano T, Taketani Y, Nakamura Y. Genome-wide cDNA microarray analysis of gene-expression profiles involved in ovarian endometriosis. Int J Oncol. 2003;22(3):551–60. doi: 10.3892/ijo.22.3.551.
  126. Moreno-Bueno G, Hardisson D, Sarrió D, Sánchez C, Cassia R, Prat J, Herman JG, Esteller M, Matías-Guiu X, Palacios J. Abnormalities of Eand P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol. 2003;199(4):471–8. doi: 10.1002/path.1310.
  127. Enciso M, Carrascosa JP, Sarasa J, Martínez-Ortiz PA, Munné S, Horcajadas JA, Aizpurua J. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis. Hum Reprod. 2018;33(2):220–8. doi: 10.1093/humrep/dex370.
  128. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. doi: 10.1016/j.cell.2009.01.002.
  129. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33. doi: 10.1038/nrg3965.
  130. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi: 10.1038/nature02871.
  131. Bartel DP. Metazoan MicroRNAs. Cell. 2018; 173 (1): 20 – 51 . doi :10.1016/j.cell.2018.03.006.
  132. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004. doi: 10.1073/pnas.0307323101.
  133. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci U S A. 2004;101(32): 11755–60. doi: 10.1073/pnas.0404432101.
  134. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. doi: 10.1038/nature03702.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Kibanov M.V., Makhmudova G.M., Gokhberg Y.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies