Evaluation of nonlinear dynamics of the cell structure damage as a promising method for personalized cancer diagnostics
- Authors: Naimark O.B.1, Nikityuk A.S.1, Nebogatikov V.O.2, Grishko V.V.2
-
Affiliations:
- Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
- Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 46, No 8 (2018)
- Pages: 742-747
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/934
- DOI: https://doi.org/10.18786/2072-0505-201846-8-742-747
- ID: 934
Cite item
Full Text
Abstract
Background: Modulation interference microscopy is one of the promising technologies for early personalized cancer diagnostics, while it gives the possibility to obtain real-time images of living functioning cells at a nanometer resolution, as well as to assess spatio-temporal changes of their intracellular structures.
Aim: To identify the markers of malignant transformation of cells based on a multiple scale spatio-temporal of the data obtained by lase interferometry during in situ registration of changes in intracellular structures.
Materials and methods: The study was performed with the breast adenocarcinoma MCF-7 cell line and human kidney epithelial cells HEK 293 provided by the N.N. Blokhin National Medical Research Centre of Oncology (Moscow, Russia). Changes in fluctuation of the living cell phase thickness were measured with a laser modulation interference microscope MIM-340 (PA UOMZ, Russia). The multifractal detrended fluctuation analysis (MF-DFA) was used to assess the results obtained.
Results: By comparison of the scaling exponential spectra and corresponding spectra of the singular fluctuations in the minimal and maximal diameters of the phase pictures of HEK 293 cells and MCF-7 cells, it was shown that the cancer cell dynamics has definite monofractal properties: a linear dependency of the scaling exponents τ from the actual q parameter and “dotted” singularity spectrum (the spectral width does not exceed 0.1). The dynamics of healthy cell demonstrated multifractal properties, such as a non-linear dependency τ(q) and a bell shaped singularity spectrum (the spectral width over 0.1).
Conclusion: We have proposed a new approach to assess the intracellular structural damage during oncogenesis. The signs of monofractality are objective criteria of malignization. The results obtained seems promising as early diagnostic markers of cancer transformation (damage) of cells and determination of tumor cell sensitivity / resistance to anti-tumor agents in an individual patient.
About the authors
O. B. Naimark
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: naimark@icmm.ru
Oleg B. Naimark – ScD in Phys.-Math., Professor, Head of Laboratory of Physical Foundation of Strength
1 Akademika Koroleva ul., Perm, 614013
РоссияA. S. Nikityuk
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
Email: fake@neicon.ru
Aleksandr S. Nikityuk – Junior Research Fellow, Laboratory of Physical Foundation of Strength
1 Akademika Koroleva ul., Perm, 614013
РоссияV. O. Nebogatikov
Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: fake@neicon.ru
Vladimir O. Nebogatikov – PhD in Biology, Junior Research Fellow, Laboratory of Biological Active Compounds
3 Akademika Koroleva ul., Perm, 614013
РоссияV. V. Grishko
Institute of Technical Chemistry of the Ural Branch of the Russian Academy of Sciences
Email: fake@neicon.ru
Viktoriya V. Grishko – PhD in Chemistry, Associate Professor, Head of Laboratory of Biological Active Compounds
3 Akademika Koroleva ul., Perm, 614013
РоссияReferences
- Тычинский ВП. Динамическая фазовая микроскопия: возможен ли «диалог» с клеткой? Успехи физических наук. 2007;177(5): 535–52. doi: 10.3367/UFNr.0177.200705c.0535.
- Василенко ИА, Кардашова ЗЗ, Тычинский ВП, Вишенская ТВ, Лифенко РА, Валов АЛ, Иванюта ИВ, Агаджанян БЯ. Клеточная диагностика: возможности витальной компьютерной микроскопии. Вестник последипломного медицинского образования. 2009;(3–4):64–8.
- Majeed H, Sridharan S, Mir M, Ma L, Min E, Jung W, Popescu G. Quantitative phase imaging for medical diagnosis. J Biophotonics. 2017;10(2):177–205. doi: 10.1002/jbio.201600113.
- Bishitz Y, Gabai H, Girshovitz P, Shaked NT. Optical-mechanical signatures of cancer cells based on fluctuation profles measured by interferometry. J Biophotonics. 2014;7(8):624– 30. doi: 10.1002/jbio.201300019.
- Игнатьев ПС, Индукаев КВ, Осипов ПА, Сергеев ИК. Лазерная интерференционная микроскопия для нанобиотехнологий. Медицинская техника. 2013;(1):27–30.
- Naimark O. Nonlinear dynamics and damage induced properties of soft matter with application in oncology. AIP Conference Proceedings. 2017;1882(1):020052. doi: 10.1063/1.5001631.
- Gerasimova-Chechkina E, Toner B, Marin Z, Audit B, Roux SG, Argoul F, Khalil A, Gileva O, Naimark O, Arneodo A. Comparative Multifractal Analysis of Dynamic Infrared Thermograms and X-Ray Mammograms Enlightens Changes in the Environment of Malignant Tumors. Front Physiol. 2016;7:336. doi: 10.3389/fphys.2016.00336.
- Naimark OB, Nikitiuk AS, Baudement MO, Forne T, Lesne A. The physics of cancer: The role of epigenetics and chromosome conformation in cancer progression. AIP Conference Proceedings. 2016;1760(1):020051. doi: 10.1063/1.4960270.
- Tsuchiya M, Selvarajoo K, Piras V, Tomita M, Giuliani A. Local and global responses in complex gene regulation networks. Physica A: Statistical Mechanics and its Applications. 2009;388(8):1738–46. doi: 10.1016/j.physa.2008.12.030.
- Чиссов ВИ, Тычинский ВП, Волченко НН, Решетов ИВ, Кретушев АВ, Вышенская ТВ, Славнова ЕН, Барыгина ВВ, Клемешов ИВ. Когерентная фазовая микроскопия опухолей на модели рака молочной железы. Российский онкологический журнал. 2006;(2):11–5.
- Naimark OB. Defect induced transitions as mechanisms of plasticity and failure in multifeld continua (review paper). In: Capriz G, Mariano P, editors. Advances in multifeld theories of continua with substructure. Boston: Birkhauser; 2004. p. 75–114.