Soluble forms of immune checkpoint receptor PD-1 and its ligand PD-L1 in plasma of patients with ovarian neoplasms

Cover Page


Cite item

Full Text

Abstract

Background: Ovarian cancer is one of the most common oncologic diseases holding the frst place in mortality related to neoplasms of female genitalia. Along with active surgical intervention, contemporary ovarian cancer treatment includes various chemotherapeutic regimens which in many cases are quite effective, but relapse and death rates still remain high. In the recent years, major attention has been paid to the possibility of ovarian cancer immunotherapy associated with the discovery of the so-called “immune checkpoint” signaling, i.e. programmed cell death-1 / programmed death-ligand 1 (PD-1/PD-L) pathway, controlling intensity and duration of autoimmune response at physiologic conditions. Tumor PD-1 and/or PD-L1 expression is being actively studied as a predictor of anti-PD-1/PD-L treatment efficacy; however, this approach has certain limitations and problems that might be probably bypassed by determination of soluble PD-1 (sPD-1) and its ligand (sPD-L1) in serum or plasma.

Aim: Comparative evaluation of sPD-1 and sPD-L1 content in plasma of healthy women and of patients with benign or borderline ovarian tumors and ovarian cancer, as well as the analysis of associations between these markers and main clinical and pathologic characteristics of ovarian cancer.

Materials and methods: Sixty two (62) patients with ovarian neoplasms aged 32 to 77 (median, 56.5) years were enrolled into the study. Fifteen (15) patients had benign tumors, 9 had borderline, and 38, ovarian cancer. The control group included 17 healthy women aged 24 to 67 (median, 49) years. Plasma sPD-L1 and sPD-1 concentrations were measured with standard enzyme immunoassay kits (Afmetrix, eBioscience, USA).

Results: Plasma sPD-L1 and sPD-1 levels in ovarian cancer patients (median, 41.3 and 48.0 pg/ml, respectively) did not differ significantly from those in the control group (49.5 and 43.8 pg/ml). sPD-L1 level in the patients with benign tumors (median, 22.2 pg/ml) was signifcantly lower than in the control (p < 0.01). The lowest sPD-1 level in plasma was found in the patients with borderline ovarian neoplasms, the difference with the ovarian cancer group being statistically signifcant (p < 0.05). No correlations between sPD-L1 and sPD-1 plasma levels were found in any of the study groups. sPD-L1 level signifcantly increased with disease stage (R = 0.44; p < 0.01), the most signifcant increase being observed at the most advanced IIIC stage (p < 0.05 as compared to all other stages). sPD-L1 was also signifcantly higher in the patients with ascites than in those without ascites. Plasma sPD-1 concentration was not associated with the indices of ovarian cancer progression, though its median was 1.3–1.44 times lower in the stage I than in the stage II–III patients, and decreased in those with the tumor size above 10 cm (assessed by ultrasound examination) and in the patients with ascites. No statistically signifcant associations of the markers' levels with tumor histological type and differentiation grade of ovarian cancer were found.

Conclusion: sPD-L1 level in ovarian cancer patients correlates with disease progression and can be considered as a promising marker for monitoring of anti-PD-1/PD-L1 treatment efficacy. Potential clinical implications of sPD-1 require further studies.

About the authors

E. S. Gershtein

N.N. Blokhin National Medical Research Centre of Oncology

Author for correspondence.
Email: esgershtein@gmail.com

Elena S. Gershtein – PhD, Doctor of Biol. Sci., Professor, Leading Research Fellow, Laboratory of Clinical Biochemistry

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

D. O. Utkin

Ryazan Regional Clinical Oncology Dispensary

Email: fake@neicon.ru

Dmitriy O. Utkin – MD, Doctor of the Oncogynecological Department

13 Sportivnaya ul., Ryazan, 390047

Russian Federation

I. O. Goryacheva

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Irina O. Goryacheva – Laboratory Diagnostics Doctor, Laboratory of Clinical Biochemistry

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

M. M. Khulamkhanova

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: fake@neicon.ru

Marina M. Khulamkhanova – Postgraduate Student, Chair of Oncology

20–1 Delegatskaya ul., Moscow, 127473

Russian Federation

N. A. Petrikova

Ryazan Regional Clinical Oncology Dispensary

Email: fake@neicon.ru

Natal'ya A. Petrikova – MD, Pathologist, Department of Pathologic Anatomy with Pathomorphologic Laboratory

13 Sportivnaya ul., Ryazan, 390047

Russian Federation

I. I. Vinogradov

Ryazan State Medical University

Email: fake@neicon.ru

Il'ya I. Vinogradov – MD, PhD, Associate Professor, Chair of Histology, Pathologic Anatomy, and Medical Genetics

9 Vysokovol'tnaya ul., Ryazan, 390026

Russian Federation

A. A. Alferov

A.I. Yevdokimov Moscow State University of Medicine and Dentistry

Email: fake@neicon.ru

Alexander A. Alferov – Postgraduate Student, Chair of Clinical Biochemistry and Laboratory Diagnostics, Faculty of Postgraduate Education

20–1 Delegatskaya ul., Moscow, 127473

Russian Federation

I. S. Stilidi

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Ivan S. Stilidi – Member-Correspondent of Russian Academy of Sciences, MD, PhD, Professor, Head of the Surgical Department of Abdominal Oncology, Director

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

N. E. Kushlinskii

N.N. Blokhin National Medical Research Centre of Oncology

Email: fake@neicon.ru

Nikolay E. Kushlinskii – Member-Correspondent of Russian Academy of Sciences, MD, PhD, Professor, Head of Laboratory of Clinical Biochemistry

24 Kashirskoe shosse, Moscow, 115478

Russian Federation

References

  1. Zhu X, Lang J. The signifcance and therapeutic potential of PD-1 and its ligands in ovarian cancer: A systematic review. Gynecol Oncol. 2016;142(1):184–9. doi: 10.1016/j.ygyno.2016.04.002.
  2. Mandai M, Hamanishi J, Abiko K, Matsumura N, Baba T, Konishi I. Anti-PD-L1/PD-1 immune therapies in ovarian cancer: basic mechanism and future clinical application. Int J Clin Oncol. 2016;21(3):456–61. doi: 10.1007/s10147-0160968-y.
  3. Inayama Y, Hamanishi J, Matsumura N, Murakami R, Abiko K, Yamaguchi K, Baba T, Horie K, Konishi I, Mandai M. Antitumor effect of nivolumab on subsequent chemotherapy for platinum-resistant ovarian cancer. Oncologist. 2018;23(11):1382–4. doi: 10.1634/theoncologist.2018-0167.
  4. Hamanishi J, Mandai M, Matsumura N, Abiko K, Baba T, Konishi I. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol. 2016;21(3):462–73. doi: 10.1007/s10147-016-0959-z.
  5. Yun S, Vincelette ND, Green MR, Wahner Hendrickson AE, Abraham I. Targeting immune checkpoints in unresectable metastatic cutaneous melanoma: a systematic review and meta-analysis of anti-CTLA-4 and anti-PD-1 agents trials. Cancer Med. 2016;5(7): 1481–91. doi: 10.1002/cam4.732.
  6. Massari F, Santoni M, Ciccarese C, Santini D, Alferi S, Martignoni G, Brunelli M, Piva F, Berardi R, Montironi R, Porta C, Cascinu S, Tortora G. PD-1 blockade therapy in renal cell carcinoma: current studies and future promises. Cancer Treat Rev. 2015;41(2):114–21. doi: 10.1016/j.ctrv.2014.12.013.
  7. Кушлинский НЕ, Фридман МВ, Морозов АА, Герштейн ЕС, Кадагидзе ЗГ, Матвеев ВБ. Cовременные подходы к иммунотерапии рака почки. Онкоурология. 2018;14(2):54– 67. doi: 10.17650/1726-9776-2018-14-2-54-67.
  8. Zhu X, Xu J, Cai H, Lang J. Carboplatin and programmed death-ligand 1 blockade synergistically produce a similar antitumor effect to carboplatin alone in murine ID8 ovarian cancer model. J Obstet Gynaecol Res. 2018;44(2): 303–11. doi: 10.1111/jog.13521.
  9. Maleki Vareki S, Garrigós C, Duran I. Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol Hematol. 2017;116:116–24. doi: 10.1016/j.critrevonc.2017.06.001.
  10. Yuasa T, Masuda H, Yamamoto S, Numao N, Yonese J. Biomarkers to predict prognosis and response to checkpoint inhibitors. Int J Clin Oncol. 2017;22(4):629–34. doi: 10.1007/s10147-017-1122-1.
  11. Zhang Y, Kang S, Shen J, He J, Jiang L, Wang W, Guo Z, Peng G, Chen G, He J, Liang W. Prognostic signifcance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine (Baltimore). 2015;94(6):e515. doi: 10.1097/MD.0000000000000515.
  12. Sacher AG, Gandhi L. Biomarkers for the clinical use of PD-1/PD-L1 inhibitors in non-small-cell lung cancer: a review. JAMA Oncol. 2016;2(9): 1217–22. doi: 10.1001/jamaoncol.2016.0639.
  13. Kim KS, Sekar RR, Patil D, Dimarco MA, Kissick HT, Bilen MA, Osunkoya AO, Master VA. Evaluation of programmed cell death protein 1 (PD-1) expression as a prognostic biomarker in patients with clear cell renal cell carcinoma. Oncoimmunology. 2018;7(4):e1413519. doi: 10.1080/2162402X.2017.1413519.
  14. Huang X, Zhang W, Zhang Z, Shi D, Wu F, Zhong B, Shao Z. Prognostic value of programmed cell death 1 ligand-1 (PD-L1) or PD-1 expression in patients with osteosarcoma: a meta-analysis. J Cancer. 2018;9(14): 2525–31. doi: 10.7150/jca.25011.
  15. Drakes ML, Mehrotra S, Aldulescu M, Potkul RK, Liu Y, Grisoli A, Joyce C, O'Brien TE, Stack MS, Stiff PJ. Stratifcation of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand-1 (PD-L1) in ovarian cancer. J Ovarian Res. 2018;11(1):43. doi: 10.1186/s13048-018-0414-z.
  16. Darb-Esfahani S, Kunze CA, Kulbe H, Sehouli J, Wienert S, Lindner J, Budczies J, Bockmayr M, Dietel M, Denkert C, Braicu I, Jöhrens K. Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infltrating lymphocytes in ovarian high grade serous carcinoma. Oncotarget. 2016;7(2):1486–99. doi: 10.18632/oncotarget.6429.
  17. Strickland KC, Howitt BE, Shukla SA, Rodig S, Ritterhouse LL, Liu JF, Garber JE, Chowdhury D, Wu CJ, D'Andrea AD, Matulonis UA, Konstantinopoulos PA. Association and prognostic signifcance of BRCA1/2-mutation status with neoantigen load, number of tumor-infltrating lymphocytes and expression of PD-1/PD-L1 in high grade serous ovarian cancer. Oncotarget. 2016;7(12):13587–98. doi: 10.18632/oncotarget.7277.
  18. Wieser V, Gaugg I, Fleischer M, Shivalingaiah G, Wenzel S, Sprung S, Lax SF, Zeimet AG, Fiegl H, Marth C. BRCA1/2 and TP53 mutation status associates with PD-1 and PD-L1 expression in ovarian cancer. Oncotarget. 2018;9(25):17501– 11. doi: 10.18632/oncotarget.24770.
  19. Howitt BE, Strickland KC, Sholl LM, Rodig S, Ritterhouse LL, Chowdhury D, D'Andrea AD, Matulonis UA, Konstantinopoulos PA. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tumor-infltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology. 2017;6(2):e1277308. doi: 10.1080/2162402X.2016.1277308.
  20. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. doi: 10.1038/nrc.2016.36.
  21. Zhu X, Lang J. Soluble PD-1 and PD-L1: predictive and prognostic signifcance in cancer. Oncotarget. 2017;8(57):97671–82. doi: 10.18632/oncotarget.18311.
  22. Ding Y, Sun C, Li J, Hu L, Li M, Liu J, Pu L, Xiong S. The prognostic signifcance of soluble programmed death ligand 1 expression in cancers: a systematic review and meta-analysis. Scand J Immunol. 2017;86(5):361–7. doi: 10.1111/sji.12596.
  23. We W, Xu B, Wang Y, Wu C, Jiang J, Wu C. Prognostic signifcance of circulating soluble programmed death ligand-1 in patients with solid tumors: a meta-analysis. Medicine (Baltimore). 2018;97(3):e9617. doi: 10.1097/MD.0000000000009617.
  24. Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical signifcance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896–905. doi: 10.1158/1078-0432.CCR-17-2664.
  25. Kim HJ, Park S, Kim KJ, Seong J. Clinical signifcance of soluble programmed cell death ligand-1 (sPD-L1) in hepatocellular carcinoma patients treated with radiotherapy. Radiother Oncol. 2018;129(1):130–5. doi: 10.1016/j.radonc.2017.11.027.
  26. Guo X, Wang J, Jin J, Chen H, Zhen Z, Jiang W, Lin T, Huang H, Xia Z, Sun X. High serum level of soluble programmed death ligand 1 is associated with a poor prognosis in Hodgkin lymphoma. Transl Oncol. 2018;11(3):779–85. doi: 10.1016/j.tranon.2018.03.012.
  27. Chatterjee J, Dai W, Aziz NHA, Teo PY, Wahba J, Phelps DL, Maine CJ, Whilding LM, Dina R, Trevisan G, Flower KJ, George AJT, GhaemMaghami S. Clinical use of programmed cell death-1 and its ligand expression as discriminatory and predictive markers in ovarian cancer. Clin Cancer Res. 2017;23(13):3453–60. doi: 10.1158/1078-0432.CCR-16-2366.
  28. Кушлинский НЕ, Герштейн ЕС, Морозов АА, Горячева ИО, Филипенко МЛ, Алферов АА, Бежанова СД, Базаев ВВ, Казанцева ИА. Растворимый лиганд рецептора контрольной точки иммунитета (sPD-L1) в сыворотке крови при почечно-клеточном раке. Бюллетень экспериментальной биологии и медицины. 2018;166(9):325–9.
  29. Zheng Z, Bu Z, Liu X, Zhang L, Li Z, Wu A, Wu X, Cheng X, Xing X, Du H, Wang X, Hu Y, Ji J. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin J Cancer Res. 2014;26(1):104–11. doi: 10.3978/j.issn.1000-9604.2014.02.08.
  30. Finkelmeier F, Canli O, Tal A, Pleli T, Trojan J, Schmidt M, Kronenberger B, Zeuzem S, Piiper A, Greten FR, Waidmann O. High levels of the soluble programmed death-ligand (sPD-L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer. 2016;59:152–9. doi: 10.1016/j.ejca.2016.03.002.
  31. Zhang J, Gao J, Li Y, Nie J, Dai L, Hu W, Chen X, Han J, Ma X, Tian G, Wu D, Shen L, Fang J. Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics. Thorac Cancer. 2015;6(4):534–8. doi: 10.1111/17597714.12247.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Gershtein E.S., Utkin D.O., Goryacheva I.O., Khulamkhanova M.M., Petrikova N.A., Vinogradov I.I., Alferov A.A., Stilidi I.S., Kushlinskii N.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies