Adhesivity оf standard and biofilm cultures of toxigenic Corynebacterium diphtheriaе strains

Cover Page

Cite item

Abstract

Background: Adhesion and ability to form a  biofilm are considered among the leading pathogenicity factors of Corynebacterium diphtheriaе, responsible for bacterial carriage. It is exactly bacterial carriage that ensures the circulation of diphtheria pathogen strains in the inter-epidemic periods. Aim: To assess and compare adhesivity of standard and biofilm cultures of toxigenic C. diphtheriae strains. Materials and methods: We studied standard and biofilm (120  and 720  hour) cultures of C.  diphtheriae strains. Their ability to form a  biofilm was tested according to P. Watnick (2000). Adhesivity was assessed in the pharyngeal epithelial carcinoma Hep-2 cell culture with various time exposures (2, 8, and 18  hours). The amounts of C. diphtheriae adhered to Нер-2 cells were measured by culturing the swabs in the 20% serum agar with subsequent calculation of mean numbers of colony-forming units (CFU) per 1  mL. Results: All standard and biofilm cultures of the studied toxigenic strains of C. diphtheriae had adhesive properties of various degrees. The highest adhesivity was found in a  circulating strain C.  diphtheriae gravis tox+ (from 0.26 ± 0.01 to 203.3 ± 3.3 CFU/mL), which differed from the same parameters in other strains studied (from 0.03 ± 0.003 to 0.20 ± 0.01  CFU/mL). The lowest adhesivity after a 2-hour exposure was found both in the standard and biofilm cultures of C.  diphtheriae gravis tox+ 6765, whereas after the exposure of 8 and 18  hours, the lowest adhesion properties were demonstrated by C.  diphtheriae gravis with a “silent” tox gene and C. diphtheriae mitis tox+ 269. All cultures of toxigenic C. diphtheriae strains showed a  statistically significant increase in their adhesivity (р ≤ 0.05) by 8 and 18  hour of cultivation. Conclusion: Circulating C.  diphtheriae gravis tox+ strain demonstrated the highest adhesivity among all toxigenic strains of the diphtheria pathogens studied. 

About the authors

G. G. Kharseeva

Rostov State Medical University

Email: fake@neicon.ru

Kharseeva Galina G. – MD, PhD, Professor, Head of the Chair of Microbiology and Virology No. 21  

29 Nakhichevanskiy pereulok, Rostov-on-Don, 344022 

Russian Federation

A. A. Alieva

Rostov State Medical University

Author for correspondence.
Email: anna1976rita@mail.ru

Alieva Anna A. – Senior Laboratory Assistant, Chair of Microbiology and Virology No. 21 

29 Nakhichevanskiy pereulok, Rostov-on-Don, 344022 

Russian Federation

O. I. Sylka

Rostov State Medical University

Email: fake@neicon.ru

Sylka Ol'ga I. – MD, PhD, Associate Professor, Chair of Microbiology and Virology No. 21 

29 Nakhichevanskiy pereulok, Rostov-on-Don, 344022 

Russian Federation

S. Yu. Tyukavkina

Rostov State Medical University

Email: fake@neicon.ru

Tyukavkina Svetlana Yu. – MD, PhD, Associate Professor, Chair of Microbiology and Virology No. 21 

29 Nakhichevanskiy pereulok, Rostov-on-Don, 344022 

Russian Federation

L. P. Alekseeva

Rostov-on-Don Plague Control Research Institute

Email: fake@neicon.ru

Alekseeva Lyudmila P. – Doctor of Biol. Sci., Professor, Head of the Laboratory of Hybridomas 

117/40 M. Gor'kogo ul., Rostov-on-Don, 344002

Russian Federation

References

  1. Харсеева ГГ, Москаленко ЕП, Трухачев АЛ, Митрофанова ТВ. Патогенные свойства С. diphtheriae, циркулирующих в г. Ростове-на-Дону и Ростовской области в межэпидемический период. Журнал микробиологии, эпидемиологии и иммунобиологии. 2006;(6):6–9.
  2. Костюкова НН, Карась СР. Адгезивная активность дифтерийных штаммов в зависимости от особенностей вызываемого ими инфекционного процесса. Журнал микробиологии. 1991;(11):24–7.
  3. Ott L, Höller M, Gerlach RG, Hensel M, Rheinlaender J, Schäffer TE, Burkovski A. Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol. 2010;10:2. doi: 10.1186/1471-2180-10-2.
  4. Rogers EA, Das A, Ton-That H. Adhesion by pathogenic corynebacteria. Adv Exp Med Biol. 2011;715:91–103. doi: 10.1007/978-94-007-0940-9_6.
  5. Burkovski A. Cell envelope of corynebacteria: structure and influence on pathogenicity. ISRN Microbiol. 2013;2013:935736. doi: 10.1155/2013/935736.
  6. Mandlik A, Swierczynski A, Das A, Ton-That H. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 2008;16(1):33–40. doi: 10.1016/j.tim.2007.10.010.
  7. Moreira LO, Mattos-Guaraldi AL, Andrade AF. Novel lipoarabinomannan-like lipoglycan (CdiLAM) contributes to the adherence of Corynebacterium diphtheriae to epithelial cells. Arch Microbiol. 2008;190(5):521–30. doi: 10.1007/s00203-008-0398-y.
  8. Colombo AV, Hirata R Jr, de Souza CM, Monteiro-Leal LH, Previato JO, Formiga LC, Andrade AF, Mattos-Guaraldi AL. Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett. 2001;197(2):235–9. doi: 10.1111/j.1574-6968.2001.tb10609.x.
  9. Sabbadini PS, Assis MC, Trost E, Gomes DL, Moreira LO, Dos Santos CS, Pereira GA, Nagao PE, Azevedo VA, Hirata Júnior R, Dos Santos AL, Tauch A, Mattos-Guaraldi AL. Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog. 2012;52(3): 165–76. doi: 10.1016/j.micpath.2011.12.003.
  10. Харсеева ГГ, Алиева АА. Адгезия Corynebacterium diphtheriaе: роль поверхностных структур и механизм формирования. Журнал микробиологии, эпидемиологии и иммунобиологии. 2014;(4):109–17.
  11. Sued BP, Pereira PM, Faria YV, Ramos JN, Binatti VB, Santos KR, Seabra SH, Hirata R Júnior, Vieira VV, Mattos-Guaraldi AL, Pereira JA. Sphygmomanometers and thermometers as potential fomites of Staphylococcus haemolyticus: biofilm formation in the presence of antibiotics. Mem Inst Oswaldo Cruz. 2017;112(3): 188–95. doi: 10.1590/0074-02760160381.
  12. Харсеева ГГ, Миронов АЮ, Фролова ЯН, Лабушкина АВ. Биологические свойства Сorynebacterium diphtheriaе в составе биопленки. Иммунопатология, аллергология, инфектология. 2012;(4):88–91.
  13. Pizarro-Cerdá J, Cossart P. Bacterial adhesion and entry into host cells. Cell. 2006;124(4): 715–27. doi: 10.1016/j.cell.2006.02.012.
  14. Харсеева ГГ, ред. Дифтерия: микробиологические и иммунологические аспекты. М.: Практическая медицина; 2014. 241 с.
  15. Харсеева ГГ, Миронов АЮ, Фролова ЯН, Лабушкина АВ. Способность к формированию биопленки возбудителем дифтерии. Клиническая лабораторная диагностика. 2013;(2): 36–8.
  16. Watnick P, Kolter R. Biofilm, city of microbes. J Bacteriol. 2000;182(10):2675–9. doi: 10.1128/JB.182.10.2675-2679.2000.
  17. Ott L, Höller M, Rheinlaender J, Schäffer TE, Hensel M, Burkovski A. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol. 2010;10:257. doi: 10.1186/1471-2180-10-257.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2017 Kharseeva G.G., Alieva A.A., Sylka O.I., Tyukavkina S.Y., Alekseeva L.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies