TRABECULAR BONE SCORE – A NON-INVASIVE ANALYTICAL METHOD TO EVALUATE BONE QUALITY BASED ON ROUTINE DUAL-ENERGY ABSORPTIOMETRY. PERSPECTIVES OF ITS USE IN CLINICAL PRACTICE

Cover Page


Cite item

Full Text

Abstract

Two-dimensional dual-energy X-ray absorptiometry (DXA, osteodensitometry) is currently considered as the gold standard for diagnosis of osteoporosis. However, despite good operational characteristics, this type of investigation cannot help to assess bone microarchitecture and the degree of its derangement in osteoporosis. Therefore, trabecular bone score (TBS) has been developed as a  non-invasive method of indirect description of bone microarchitecture based on data derived from a  standard DXA of the lumbar spine. Not being a direct mapping of the physical measurements of trabecular microarchitecture, TBS nevertheless shows a positive correlation with quantitative values obtained from micro-computed tomography and high resolution peripheral quantitative computed tomography, i.e. with the bone volume fraction, junction density, trabecular numbers and their disintegration. There is also an association between the ability of the bone tissue to resist stress in experimental studies ex vivo and TBS measurement. Due to TBS, there is a possibility to detect bone microarchitecture impairment even in individuals with normal bone mineral density (BMD), i.e. higher TBS values correlate with improved bone microstructure, whereas a  reduced TBS shows its deterioration. Limitation of TBS use are primarily related to the DXA image quality: image faults caused either by technical reasons or by too low or too high body mass index can lead to an overestimation/underestimation of the index. Assessment of the lumbar TBS has been repeatedly performed in cross-sectional and prospective studies in representative patient samples (mainly postmenopausal women) and significant numbers of healthy subjects, and proved to be a predictor (independent of BMD) of fracture risk. An evaluation of the possibility to use TBS for early diagnosis of secondary osteoporosis (related to various endocrine disorders)  would be of great interest, as BMD, as known from clinical practice, is not always a  reliable measurement of the bone endurance, especially in diabetes, steroid osteoporosis and acromegaly.  The use of TBS along with BMD as a  marker of efficacy of current treatment for secondary osteoporosis is also possible, but it is not yet evidence-based; therefore, research has to be continued.

About the authors

T. T. Tsoriev

Endocrinology Research Center

Author for correspondence.
Email: timur.tsoriev@gmail.com

MD, Postgraduate Student, Department of Neuroendocrinology and Osteopathies,

11 Dmitriya Ul'yanova ul., Moscow, 117036

Russian Federation

Zh. E. Belaya

Endocrinology Research Center

Email: fake@neicon.ru

MD, PhD, Chief Research Fellow, Head of Department of Neuroendocrinology and Osteopathies,

11 Dmitriya Ul'yanova ul., Moscow, 117036

Russian Federation

G. A. Mel'nichenko

Endocrinology Research Center

Email: fake@neicon.ru

Member of Russ. Acad. Sci., MD, PhD, Professor, Director of Institute of Clinical Endocrinology,

11 Dmitriya Ul'yanova ul., Moscow, 117036

Russian Federation

References

  1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. doi: 10.1007/s00198-006-0172-4.
  2. Kanis JA on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health care level [Internet]. Sheffield, UK: WHO Scientific Group Technical Report; 2007. Available from: http://www.shef.ac.uk/FRAX/pdfs/WHO_Technical_Report.pdf.
  3. Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY; Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) and the Committee of Scientific Advisors of the International Osteoporosis Foundation (IOF). European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57. doi: 10.1007/s00198-012-2074-y.
  4. Odén A, McCloskey EV, Johansson H, Kanis JA. Assessing the impact of osteoporosis on the burden of hip fractures. Calcif Tissue Int. 2013;92(1):42–9. doi: 10.1007/s00223-012-9666-6.
  5. Browner WS, Pressman AR, Nevitt MC, Cummings SR. Mortality following fractures in older women. The study of osteoporotic fractures. Arch Intern Med. 1996;156(14):1521–5. doi: 10.1001/archinte.1996.00440130053006.
  6. Hannan EL, Magaziner J, Wang JJ, Eastwood EA, Silberzweig SB, Gilbert M, Morrison RS, McLaughlin MA, Orosz GM, Siu AL. Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA. 2001;285(21):2736–42. doi: 10.1001/jama.285.21.2736.
  7. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50. doi: 10.1016/0002-9343(93)90218-E.
  8. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994;843:1–129.
  9. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O'Neill T, Pols H, Reeve J, Silman A, Tenenhouse A. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94. doi: 10.1359/JBMR.050304.
  10. Albrand G, Munoz F, Sornay-Rendu E, DuBoeuf F, Delmas PD. Independent predictors of all osteoporosis-related fractures in healthy postmenopausal women: the OFELY study. Bone. 2003;32(1):78–85. doi: http://dx.doi.org/10.1016/S8756-3282(02)00919-5.
  11. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA, McCloskey EV, Mellstrom D, Melton LJ 3rd, Pols HA, Reeve J, Silman AJ, Tenenhouse A. A family history of fracture and fracture risk: a meta-analysis. Bone. 2004;35(5):1029–37. doi: 10.1016/j.bone.2004.06.017.
  12. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A. A meta-analysis of previous fracture and subsequent fracture risk. Bone. 2004;35(2):375–82. doi: 10.1016/j.bone.2004.03.024.
  13. Белая ЖЕ, Рожинская ЛЯ. Падения – важная социальная проблема пожилых людей. Основные механизмы развития и пути предупреждения. Русский медицинский журнал. 2009;17(24):1614–9.
  14. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15. doi: 10.1210/jc.2005-1258.
  15. Genant HK, Engelke K, Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology (Oxford). 2008;47 Suppl 4:iv9–16. doi: 10.1093/rheumatology/ken180.
  16. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, Klibanski A, Gupta R. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology. 2008;249(3):938–46. doi: 10.1148/radiol.2492080173.
  17. Krug R, Carballido-Gamio J, Banerjee S, Burghardt AJ, Link TM, Majumdar S. In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging. 2008;27(4):854–9. doi: 10.1002/jmri.21325.
  18. Bonnick S. Bone densitometry in clinical practice: application and interpretation. 2nd edition. Totowa, NJ: Human Press Inc; 2004. 436 p.
  19. Duboeuf F, Bauer DC, Chapurlat RD, Dinten JM, Delmas P. Assessment of vertebral fracture using densitometric morphometry. J Clin Densitom. 2005;8(3):362–8. doi: 10.1385/JCD:8:3:362.
  20. Faulkner KG, Cummings SR, Black D, Palermo L, Glüer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8(10):1211–7. doi: 10.1002/jbmr.5650081008.
  21. Center JR, Nguyen TV, Pocock NA, Noakes KA, Kelly PJ, Eisman JA, Sambrook PN. Femoral neck axis length, height loss and risk of hip fracture in males and females. Osteoporos Int. 1998;8(1):75–81. doi: 10.1007/s001980050051.
  22. Bousson V, Bergot C, Sutter B, Levitz P, Cortet B; Scientific Committee of the Groupe de Recherche et d’Information sur les Ostéoporoses. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501. doi: 10.1007/s00198-011-1824-6.
  23. Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42(4):775–87. doi: 10.1016/j.bone.2007.11.018.
  24. Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom. 2013;16(3):287–96. doi: 10.1016/j.jocd.2012.05.001.
  25. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12. doi: 10.1016/j.jocd.2011.05.005.
  26. Cormier C, Lamy O, Poriau S. TBS in routine clinial practice: proposals of use [Internet]. Plan-les-Outes, Switzerland: Medimaps Group; 2012. Available from: http://www.medimapsgroup.com/upload/MEDIMAPS-UK-WEB.pdf.
  27. Дедов ИИ, Мельниченко ГА, Белая ЖЕ, Рожинская ЛЯ. Остеопороз – от редкого симптома эндокринных болезней до безмолвной эпидемии ХХ–ХХI века. Проблемы эндокринологии. 2011;57(1):35–45.
  28. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, Udesky J, Cremers S, Sarquis M, Guo XD, Hans D, Bilezikian JP. Trabecular bone score (TBS) – a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963–70. doi: 10.1210/jc.2012-4255.
  29. Silva BC, Walker MD, Abraham A, Boutroy S, Zhang C, McMahon DJ, Liu G, Hans D, Bilezikian JP. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom. 2013;16(4):554–61. doi: 10.1016/j.jocd.2013.07.001.
  30. Simonelli C, Leib E, McClung M, Winzenrieth R, Hans D. Creation of the age-related TBS curve at lumbar spine in US Caucasian women derived from DXA [abstract]. J Clin Densitom. 2013;16(Suppl):272–3. doi: 10.1016/j.jocd.2013.05.034.
  31. Leslie WD, Krieg MA, Hans D; Manitoba Bone Density Program. Clinical factors associated with trabecular bone score. J Clin Densitom. 2013;16(3):374–9. doi: 10.1016/j.jocd.2013.01.006.
  32. El Hage R, Khairallah W, Bachour F, Issa M, Eid R, Fayad F, Yared C, Zakhem E, Adib G, Maalouf G. Influence of age, morphological characteristics, and lumbar spine bone mineral density on lumbar spine trabecular bone score in Lebanese women. J Clin Densitom. 2014;17(3):434–5. doi: 10.1016/j.jocd.2013.03.012.
  33. Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24(11):2837–46. doi: 10.1007/s00198-013-2384-8.
  34. Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26(11):2762–9. doi: 10.1002/jbmr.499.
  35. Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Glüer CC, Roux C. Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone. 2013;57(1):232–6. doi: 10.1016/j.bone.2013.07.040.
  36. Popp AW, Guler S, Lamy O, Senn C, Buffat H, Perrelet R, Hans D, Lippuner K. Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res. 2013;28(3):449–54. doi: 10.1002/jbmr.1775.
  37. Laplante BL, DePalma MJ. Spine osteoarthritis. PM R. 2012;4(5 Suppl):S28–36. doi: 10.1016/j. pmrj.2012.03.005.
  38. Peel NF, Barrington NA, Blumsohn A, Colwell A, Hannon R, Eastell R. Bone mineral density and bone turnover in spinal osteoarthrosis. Ann Rheum Dis. 1995;54(11):867–71. doi: 10.1136/ard.54.11.867.
  39. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom. 2009;12(2):170–6. doi: 10.1016/j.jocd.2008.11.006.
  40. Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86(2):104–9. doi: 10.1007/s00223-009-9322-y.
  41. Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone. 2010;46(1):176–81. doi: 10.1016/j.bone.2009.06.032.
  42. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013;24(3):991–8. doi: 10.1007/s00198-012-2008-8.
  43. Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N. Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom. 2014;17(1):60–5. doi: 10.1016/j.jocd.2013.05.001.
  44. Lamy O, Krieg MA, Stoll D, Aubry-Rozier B, Metzger M, Hans D. The Osteo Laus Cohort Study: bone mineral density, micro-architecture score and vertebral fracture assessment extracted from a single DXA device in combination with clinical risk factors improve significantly the identification of women at high risk of fracture. Osteologie. 2012;21:77–82.
  45. Silva BC, Bilezikian JP. Trabecular bone score: perspectives of an imaging technology coming of age. Arq Bras Endocrinol Metabol. 2014;58(5):493–503. doi: http://dx.doi.org/10.1590/0004-2730000003456.
  46. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24(1):77–85. doi: 10.1007/s00198-012-2188-2.
  47. Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, Kagamimori S, Kagawa Y, Yoneshima H. Trabecular bone score (TBS) predicts vertebral fractures in Japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res. 2014;29(2):399–407. doi: 10.1002/jbmr.2048.
  48. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren Ö, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2016;31(5):940–8. doi: 10.1002/jbmr.2734.
  49. Krieg MA, Aubry-Rozier B, Hans D, Leslie WD. Manitoba Bone Density Program. Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int. 2013;24(3):1073–8. doi: 10.1007/s00198-012-2155-y.
  50. Günther B, Popp A, Stoll D, Rosier B, Perrelet R, Hans D, Lippuner K. Beneficial effect of PTH on spine BMD and microarchitecture (TBS) parameters in postmenopausal women with osteoporosis. A 2-year study [abstract]. Osteoporos Int. 2012;23(Suppl 2):S332–3. doi: 10.1007/s00198-012-1928-7.
  51. McClung M, Lippuner K, Brandi M, Kaufman JM, Zanchetta J, Krieg M, Bone HG, Chapurlat R, Hans D, Wang A, Yun J, Zapalowski C, Libanati C. Denosumab significantly improved trabecular bone score (TBS), an index of trabecular microarchitecture, in postmenopausal women with osteoporosis [abstract]. J Bone Miner Res. 2012;27(Suppl 1):S58–9.
  52. Белая ЖЕ, Рожинская ЛЯ, Мельниченко ГА, Ильин АВ, Драгунова НВ, Колесникова ГС, Бутрова СА, Трошина ЕА. Возможности маркера костного обмена – остеокальцина – для диагностики эндогенного гиперкортицизма и вторичного остеопороза. Остеопороз и остеопатии. 2011;(2):7–10.
  53. Драгунова НВ, Белая ЖЕ, Рожинская ЛЯ. Состояние костно-мышечной системы при эндогенном гиперкортицизме. Остеопороз и остеопатии. 2012;(3):18–24.
  54. Белая ЖЕ, Драгунова НВ, Рожинская ЛЯ, Мельниченко ГА, Дзеранова ЛК, Дедов ИИ. Низкотравматичные переломы у пациентов с эндогенным гиперкортицизмом. Предикторы и факторы риска, влияние на качество жизни. Остеопороз и остеопатии. 2013;(1): 7–13.
  55. de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int. 2005;16(12):1713–20. doi: 10.1007/s00198-005-1909-1.
  56. Strotmeyer ES, Cauley JA, Schwartz AV, Nevitt MC, Resnick HE, Bauer DC, Tylavsky FA, de Rekeneire N, Harris TB, Newman AB. Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med. 2005;165(14):1612–7. doi: 10.1001/archinte.165.14.1612.
  57. Ялочкина ТО, Белая ЖЕ, Рожинская ЛЯ, Дзеранова ЛК, Анциферов МБ, Шестакова МВ, Мельниченко ГА. Распространенность переломов и факторы риска их возникновения у пациентов с сахарным диабетом 2 типа, наблюдаемых в амбулаторном медицинском учреждении города Москвы. В: Сахарный диабет в XXI веке – время объединения усилий. Сборник тезисов VII Всероссийского диабетологического конгресса. М.; 2015. с. 334–5.
  58. Белая ЖЕ, Рожинская ЛЯ, Мельниченко ГА. Влияние манифестного и субклинического тиреотоксикоза на костную систему взрослых. Проблемы эндокринологии. 2007;53(2):9–15.
  59. Рожинская ЛЯ, Белая ЖЕ. Остеопороз в практике врача-эндокринолога: современные методы лечения. Фарматека. 2010;(3):39–45.
  60. Leslie WD, Aubry-Rozier B, Lamy O, Hans D; Manitoba Bone Density Program. J Clin Endocrinol Metab. 2013;98(2):602–9. doi: 10.1210/jc.2012-3118.
  61. Bréban S, Briot K, Kolta S, Paternotte S, Ghazi M, Fechtenbaum J, Roux C. Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom. 2012;15(3):260–6. doi: 10.1016/j.jocd.2012.01.007.
  62. Romagnoli E, Cipriani C, Nofroni I, Castro C, Angelozzi M, Scarpiello A, Pepe J, Diacinti D, Piemonte S, Carnevale V, Minisola S. ”Trabecular Bone Score“ (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53(1):154–9. doi: 10.1016/j.bone.2012.11.041.
  63. Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli V, Zhukouskaya VV, Cairoli E, Pino R, Naccarato A, Verga U, Scillitani A, Beck-Peccoz P, Chiodini I. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur J Endocrinol. 2013;169(2):155–62. doi: 10.1530/EJE-13-0305.
  64. Eller-Vainicher C, Morelli V, Ulivieri FM, Palmieri S, Zhukouskaya VV, Cairoli E, Pino R, Naccarato A, Scillitani A, Beck-Peccoz P, Chiodini I. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res. 2012;27(10):2223–30. doi: 10.1002/jbmr.1648.
  65. Colson F, Picard A, Rabier B, Piperno M, Vignon E. Trabecular bone microarchitecture alteration in glucocorticoids treated women in clinical routine? A TBS evaluation [abstract]. J Bone Miner Res. 2009;24(Suppl 1):129.
  66. Leib E, Stoll D, Winzenrieth R, Hans D. Lumbar spine microarchitecture impairment evaluation in chronic kidney disease: a TBS study [abstract]. J Clin Densitom. 2013;16(3):266. doi: http://dx.doi.org/10.1016/j.jocd.2013.05.015.
  67. Belaya ZE, Hans D, Rozhinskaya LY, Dragunova NV, Sasonova NI, Solodovnikov AG, Tsoriev TT, Dzeranova LK, Melnichenko GA, Dedov II. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing's syndrome. Arch Osteoporos. 2015;10:44. doi: 10.1007/s11657-015-0244-1.
  68. Драгунова НВ, Белая ЖЕ, Сазонова НИ, Солодовников АГ, Цориев ТТ, Рожинская ЛЯ, Хэнс Д, Мельниченко ГА, Дедов ИИ. Исследование трабекулярного индекса кости как один из новых способов неинвазивной оценки микроархитектоники костной ткани у пациентов с эндогенным гиперкортицизмом. Проблемы эндокринологии. 2015;61(4):9–16. doi: 10.14341/probl20156149-16.
  69. Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res. 1987;(215):260–71.
  70. Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res. 2006;21(1):124–31. doi: 10.1359/JBMR.050916.
  71. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30. doi: 10.1002/jbmr.2176.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Tsoriev T.T., Belaya Z.E., Mel'nichenko G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies