THE METABOLIC ACTIVITY OF THE MICROFLORA OF THE OROPHARYNX IN CHILDREN WITH BRONCHITIS AND COMMUNITY-ACQUIRED PNEUMONIA

Cover Page


Cite item

Full Text

Abstract

Background: Given a steady increase in the number of children with recurrent  respiratory tract infections, to develop methods of their rehabilitation, it is necessary to evaluate  factors of nonspecific resistance. Aim: To study metabolic activity of oropharyngeal microflora in children  with recurrent bronchitis and community-acquired pneumonia, based on determination of spectrum  of shortchain fatty acids (SCFA). Materials and methods: This prospective  study included  60 children with recurrent  respiratory  tract  infections  aged  from 3 to 7 years, hospitalized  for inpatient  treatment of bronchitis  (n = 30) and pneumonia (n = 30). The oropharyngeal microflora was assessed by classical bacteriological  method (in mucosal smears); SCFA levels in non-stimulated saliva were measured by gas liquid chromatography. Results: There was no significant difference  in qualitative  and  quantitative composition  of the oropharyngeal microflora between children  with  bronchitis  and  pneumonia. However, assessment of metabolic  functions showed some significant differences. Children with   bronchitis  showed  signs of microflora hyperactivation  with total  SCFA production up  to  118.4% (mean) from that of the reference range, with predominant activation of aerobic bacteria (anaerobic index 66.8%). In children with pneumonia, microflora was suppressed (68.13% of the normal range, the difference with the bronchitis group being significant, p < 0.05), with predominance of strictly anaerobic  bacteria (anaerobic index 110.35% from the normal range, p < 0.05). Children with recurrent respiratory tract infections had the following common characteristics: prevalence  of bacterial proteolysis (70% of patients) and butyric acid deficiency (63% from the normal level in bronchitis and 33%, in pneumonia, p > 0.05). Conclusion: The data obtained could be used to make a decision on the necessity of antibacterial therapy.

About the authors

E. A. Medvedeva

Moscow Regional Research and Clinical Institute

Author for correspondence.
Email: evgeniya0103med@yandex.ru
Medvedeva Evgeniya A. – Research Fellow, Children's Infections Disease Department Россия

E. R. Meskina

Moscow Regional Research and Clinical Institute

Email: evgeniya0103med@yandex.ru
Meskina Elena R. – MD, PhD, Professor, Head of Department of Pediatric Infections Россия

References

  1. Ковтун ТА, Усенко ДВ, Тутельян АВ, Шабалина СВ. Современная терапия острых респираторных заболеваний у детей. Инфекционные болезни. 2012;10(1):74–9.
  2. Bauman R. Microbiology with Diseases by Body System. 3 ed. Pearson Education, Benjamin Cummings; 2011. 928 p.
  3. Lamont RJ, Jenkinson HF. Oral Microbiology at a Glance. Wiley-Blackwell; 2010. 85 p.
  4. Ott SJ, Musfeldt M, Timmis KN, Hampe J, Wenderoth DF, Schreiber S. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn Microbiol Infect Dis. 2004;50(4):237–45.
  5. Амерханова АМ, Воронина ОЛ, Жиленкова ОГ, Алешкин АВ, Лисунова СА, Зубкова ЕС, Романова АА, Субботина МЕ, Кунда МС. Роль бифидофлоры в жизнеобеспечении организма ребенка и факторы, определяющие ее формирование. Вопросы детской диетологии. 2010;8(3):22–9.
  6. Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol. 2015;81(15):4955–64. doi: 10.1128/AEM.00726-15.
  7. Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl. 1997;222:3–9.
  8. Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells – possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740. doi: 10.1371/journal. pone.0103740.
  9. Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Macé K, Chou CJ. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22(7):2416–26. doi: 10.1096/fj.07-102723.
  10. Бабин ВН, Домарадский ИВ, Дубинин АВ, Кондракова ОА. Биохимические и молекулярные аспекты симбиоза человека и его микрофлоры. Российский химический журнал. 1994;38(6):66–78.
  11. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system сийской академии наук. 2014;5(2):668–73.
  12. Усенко ДВ, Погорелова ОО, Горелов АВ, Вартанян ИМ, Ардатская МД. Новые подходы к терапии острых респираторных инфекций у детей с хронической ЛОР-патологией. Фарматека. 2010;(4):72–6.
  13. Феклисова ЛВ, Мескина ЕР, Целипанова ЕЕ, Савицкая НА, Бочкарева НМ, Середина ЕЮ, Пожалостина ЛВ, Воропаева ЕА, Галкина ЛА. Клинико-лабораторные показатели у больных инфекционными кишечными и респираторными заболеваниями при включении в терапию пробиотиков. Инфекционные болезни. 2011;9(4):21–8.
  14. Елизарова ВМ, Горелов AB, Ардатская МД, Дикая AB. Состояние микробиоценоза полости рта у детей в норме и при патологии по результатам изучения микробных метаболитов слюны. Российский стоматологический журнал. 2009;(2):12–8.
  15. Гланц С. Медико-биологическая статистика. Пер. с англ. М.: Практика; 1998. 459 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Medvedeva E.A., Meskina E.R.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies