THE METABOLIC ACTIVITY OF THE MICROFLORA OF THE OROPHARYNX IN CHILDREN WITH BRONCHITIS AND COMMUNITY-ACQUIRED PNEUMONIA
- Authors: Medvedeva E.A.1, Meskina E.R.1
-
Affiliations:
- Moscow Regional Research and Clinical Institute
- Issue: No 42 (2015)
- Pages: 72-78
- Section: ARTICLES
- URL: https://almclinmed.ru/jour/article/view/38
- DOI: https://doi.org/10.18786/2072-0505-2015-42-72-78
- ID: 38
Cite item
Full Text
Abstract
Background: Given a steady increase in the number of children with recurrent respiratory tract infections, to develop methods of their rehabilitation, it is necessary to evaluate factors of nonspecific resistance. Aim: To study metabolic activity of oropharyngeal microflora in children with recurrent bronchitis and community-acquired pneumonia, based on determination of spectrum of shortchain fatty acids (SCFA). Materials and methods: This prospective study included 60 children with recurrent respiratory tract infections aged from 3 to 7 years, hospitalized for inpatient treatment of bronchitis (n = 30) and pneumonia (n = 30). The oropharyngeal microflora was assessed by classical bacteriological method (in mucosal smears); SCFA levels in non-stimulated saliva were measured by gas liquid chromatography. Results: There was no significant difference in qualitative and quantitative composition of the oropharyngeal microflora between children with bronchitis and pneumonia. However, assessment of metabolic functions showed some significant differences. Children with bronchitis showed signs of microflora hyperactivation with total SCFA production up to 118.4% (mean) from that of the reference range, with predominant activation of aerobic bacteria (anaerobic index 66.8%). In children with pneumonia, microflora was suppressed (68.13% of the normal range, the difference with the bronchitis group being significant, p < 0.05), with predominance of strictly anaerobic bacteria (anaerobic index 110.35% from the normal range, p < 0.05). Children with recurrent respiratory tract infections had the following common characteristics: prevalence of bacterial proteolysis (70% of patients) and butyric acid deficiency (63% from the normal level in bronchitis and 33%, in pneumonia, p > 0.05). Conclusion: The data obtained could be used to make a decision on the necessity of antibacterial therapy.
About the authors
E. A. Medvedeva
Moscow Regional Research and Clinical Institute
Author for correspondence.
Email: evgeniya0103med@yandex.ru
Medvedeva Evgeniya A. – Research Fellow, Children's Infections Disease Department Россия
E. R. Meskina
Moscow Regional Research and Clinical Institute
Email: evgeniya0103med@yandex.ru
Meskina Elena R. – MD, PhD, Professor, Head of Department of Pediatric Infections Россия
References
- Ковтун ТА, Усенко ДВ, Тутельян АВ, Шабалина СВ. Современная терапия острых респираторных заболеваний у детей. Инфекционные болезни. 2012;10(1):74–9.
- Bauman R. Microbiology with Diseases by Body System. 3 ed. Pearson Education, Benjamin Cummings; 2011. 928 p.
- Lamont RJ, Jenkinson HF. Oral Microbiology at a Glance. Wiley-Blackwell; 2010. 85 p.
- Ott SJ, Musfeldt M, Timmis KN, Hampe J, Wenderoth DF, Schreiber S. In vitro alterations of intestinal bacterial microbiota in fecal samples during storage. Diagn Microbiol Infect Dis. 2004;50(4):237–45.
- Амерханова АМ, Воронина ОЛ, Жиленкова ОГ, Алешкин АВ, Лисунова СА, Зубкова ЕС, Романова АА, Субботина МЕ, Кунда МС. Роль бифидофлоры в жизнеобеспечении организма ребенка и факторы, определяющие ее формирование. Вопросы детской диетологии. 2010;8(3):22–9.
- Ceci A, Kierans M, Hillier S, Persiani AM, Gadd GM. Fungal bioweathering of mimetite and a general geomycological model for lead apatite mineral biotransformations. Appl Environ Microbiol. 2015;81(15):4955–64. doi: 10.1128/AEM.00726-15.
- Macfarlane GT, Macfarlane S. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl. 1997;222:3–9.
- Nankova BB, Agarwal R, MacFabe DF, La Gamma EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells – possible relevance to autism spectrum disorders. PLoS One. 2014;9(8):e103740. doi: 10.1371/journal. pone.0103740.
- Membrez M, Blancher F, Jaquet M, Bibiloni R, Cani PD, Burcelin RG, Corthesy I, Macé K, Chou CJ. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 2008;22(7):2416–26. doi: 10.1096/fj.07-102723.
- Бабин ВН, Домарадский ИВ, Дубинин АВ, Кондракова ОА. Биохимические и молекулярные аспекты симбиоза человека и его микрофлоры. Российский химический журнал. 1994;38(6):66–78.
- Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system сийской академии наук. 2014;5(2):668–73.
- Усенко ДВ, Погорелова ОО, Горелов АВ, Вартанян ИМ, Ардатская МД. Новые подходы к терапии острых респираторных инфекций у детей с хронической ЛОР-патологией. Фарматека. 2010;(4):72–6.
- Феклисова ЛВ, Мескина ЕР, Целипанова ЕЕ, Савицкая НА, Бочкарева НМ, Середина ЕЮ, Пожалостина ЛВ, Воропаева ЕА, Галкина ЛА. Клинико-лабораторные показатели у больных инфекционными кишечными и респираторными заболеваниями при включении в терапию пробиотиков. Инфекционные болезни. 2011;9(4):21–8.
- Елизарова ВМ, Горелов AB, Ардатская МД, Дикая AB. Состояние микробиоценоза полости рта у детей в норме и при патологии по результатам изучения микробных метаболитов слюны. Российский стоматологический журнал. 2009;(2):12–8.
- Гланц С. Медико-биологическая статистика. Пер. с англ. М.: Практика; 1998. 459 с.