ACCELERATIVE AND RADIONUCLIDE TECHNOLOGIES IN CLINICAL MEDICINE

Cover Page

Cite item

Abstract

Methods based on accelerative and radionuclide technologies are more and more invading clinical practice of modern medicine. The aim of this review is to demonstrate the role of nuclear physics techniques for treatment and diagnostics of various disorders. We analyzed data published in the last 50 years in research papers, reports and other open sources considering particulars of electron accelerators and heavy charged particles in radiation and nuclear medicine and presenting the information on prevalence of accelerators and other high-tech medical equipment in Russia and worldwide.

About the authors

A. P. Chernyaev

Lomonosov Moscow State University; 1 Leninskie
gory, Moscow, 119991, Russian Federation
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; 1 Leninskie gory, Moscow, 119991, Russian Federation

Author for correspondence.
Email: varzar@physics.msu.ru
PhD, Doctor of Science in Physics and Mathematics, Professor, Head of the Chair of Physics of Accelerators and Radiation Medicine, Faculty of Physics1 ;Head of the Laboratory of Beam Technologies and Medical Physics Russian Federation

S. M. Varzar'

Lomonosov Moscow State University; 1 Leninskie
gory, Moscow, 119991, Russian Federation

Email: varzar@physics.msu.ru
PhD, Associate Professor, Chair of Physics of Accelerators and Radiation Medicine, Faculty of Physics Russian Federation

References

  1. Черняев АП, Белоусов АВ, Варзарь СМ, Борщеговская ПЮ, Колыванова МА, Николаева АА. Радионуклидные технологии в медицине. Наукоемкие технологии. 2015;(7):65–74.
  2. Черняев АП, Варзарь СМ, Белоусов АВ, Близнюк УА, Осипов АС, Загоруйко МВ. Ускорители в медицине. Медицинская физика. 2014;(1):113–20.
  3. Hamm RW. Industrial accelerators. In: Chao A, Chou W, editors. Reviews of accelerator science and technology. Singapore: World Scientific; 2008. Vol. 1. Chap. 8. p. 163–84.
  4. Комар ЕГ. Использование ускорителей в медицине и народном хозяйстве. Вестник РАН. 1973;(12):23–8.
  5. Amaldi U, Bonomi R, Braccinin S, Crescenti M, Degiovanni A, Garlasche M, Garonna A, Magrin G, Mellace C, Pearce P, Pitta G, Puggioni P, Rosso E, Verdu Andres S, Wegner R, Weiss M, Zennaro R. Accelerators for hadrontherapy: From Lawrence cyclotrons to linacs. Nuclear Instruments and Methods in Physics Research. 2010;620(1–2):563–77.
  6. Maciszewski W, Scharf W. Particle accelerators for radiotherapy. Present status and future. Physica Medica. 2004;4:137–45.
  7. Trikalinos TA, Terasawa T, Ip S, Raman G, Lau J. Particle beam radiation therapies for cancer. Technical brief No. 1. (Prepared by Tufts Medical Center Evidence-based Practice Center under Contract No. HHSA-290-07-10055.) Rockville, MD: Agency for Healthcare Research and Quality. Revised November 2009. Доступно на: www.effectivehealthcare.ahrq.gov/reports/final.cfm
  8. Beringer J et al. (Particle Data Group). Review of Particle Physics. Phys. Rev. D 86, 010001. Published 20 July 2012. doi: http://dx.doi. org/10.1103/PhysRevD.86.010001.
  9. Chernyaev AP. Nuclear physics-based technologies in medicine. Physics of Particles and Nuclei. 2012;43(2):262–72.
  10. http://www-naweb.iaea.org/nahu/dirac/
  11. http://www-elsa.physik.uni-bonn.de/accelerator_list.html
  12. Chernyaev AP, Varzar SM. Particle accelerators in modern world. Physics of Atomic Nuclei. 2014;77(10):1203–15. doi: 10.1134/ S1063778814100032.
  13. Hogstrom KR, Almond PR. Review of electron beam therapy physics. Phys Med Biol. 2006;51(13):R455–89. doi: http://dx.doi. org/10.1088/0031-9155/51/13/R25.
  14. Belousov AV, Varzar' SM, Chernyaev AP. Simulation of the conditions of photon and electron beam irradiation in magnetic fields for increasing conformity of radiation therapy. Bulletin of the Russian Academy of Sciences: Physics. 2007;71(6):841–3. doi: 10.3103/ S1062873807060172.
  15. Alimov AS, Ishkhanov BS, Shvedunov VI. Compact linear electron accelerator for radiation technologies. Moscow University Physics Bulletin. 2008;63(4):256–8. doi: 10.3103/ S0027134908040073.
  16. Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.
  17. Leksell L. Stereotaxis and radiosurgery: an operative system. Springfield: Charles C Thomas; 1971.
  18. Adler JR Jr, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg. 1997;69(1–4 Pt 2):124–8.
  19. Ho AK, Fu D, Cotrutz C, Hancock SL, Chang SD, Gibbs IC, Maurer CR Jr, Adler JR Jr. A study of the accuracy of cyberknife spinal radiosurgery using skeletal structure tracking. Neurosurgery. 2007;60(2 Suppl 1):ONS147–56.
  20. http://www.accuray.com/treatment-centers
  21. https://www.elekta.com
  22. Kapatoes JM, Olivera GH, Ruchala KJ, Smilowitz JB, Reckwerdt PJ, Mackie TR. A feasible method for clinical delivery verification and dose reconstruction in tomotherapy. Med Phys. 2001;28(4):528–42.
  23. Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487–91. doi: http://dx.doi. org/10.1148/47.5.487.
  24. http://www.ptcog.ch
  25. Кленов ГИ, Козлов ЮФ, Хорошков ВС. Шестьдесят лет протонной лучевой терапии: результаты, проблемы и тенденции. Медицинская физика. 2015;(1):86–90.
  26. International Atomic Energy Agency. Directory of cyclotrons used for radionuclide production in member states: 2006 Update. IAEADCRP/2006. Vienna: IAEA; 2006. 532 p.
  27. International Atomic Energy Agency. Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods. IAEA Technical Report Series No. 468. Vienna: IAEA; 2009. 279 p.
  28. Belyshev SS, Ermakov AN, Ishkhanov BS, Khankin VV, Kurilik AS, Kuznetsov AA, Shvedunov VI, Stopani KA. Studying photonuclear reactions using the activation technique. Nuclear Instruments and Methods in Physics Research A. 2014;745(5):133–7. doi: 10.1016/j. nima.2014.01.057.
  29. International Atomic Energy Agency. Implementation of high dose rate brachytherapy in limited resource settings. IAEA Human Health Series No.
  30. Vienna: IAEA; 2015. 97 p. 30. Williamson JF. Brachytherapy technology and physics practice since 1950: a half-century of progress. Phys Med Biol. 2006;51(13):R303–25.
  31. Christian PE, Bernier DR, Langan JK, editors. Nuclear Medicine and PET: Technology and Techniques. 5th ed. St. Louis: Mosby; 2004.
  32. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975;114(1):89–98. doi: http://dx.doi. org/10.1148/114.1.89.
  33. Zhuikov BL. Production of medical radionuclides in Russia: Status and future – a review. Journal of Applied Radiation and Isotopes. 2004;84:48–56. doi: 10.1016/j.apradiso.2013.11.025.
  34. International Atomic Energy Agency. Nuclear Technology Review. IAEA/NTR/2015. Vienna: IAEA; 2015. Доступно на: https://www.iaea. org/About/Policy/GC/GC59/GC59InfDocuments/English/gc59inf-2_en.pdf
  35. Корсунский ВН, Кодина ГЕ, Брускин АБ. Ядерная медицина. Современное состояние и перспективы развития. Атомная стратегия. 2007;(5):4–6.
  36. Костылев ВА. Предложения о системном развитии атомной медицины и медицинской физики в России. Медицинская физика. 2008;3:8–29.
  37. U.S. Department of Energy. Accelerators for America's Future. Washington: US DOE; 2010. 100 p. Доступно на: http://science.energy. gov/~/media/hep/pdf/accelerator-rd-stewardship/Report.pdf
  38. Barletta W, Chattopadhyay S, Seryi A. Educating and training accelerator scientists and technologists for tomorrow. Reviews of Accelerator Science and Technology. 2012;5:313–31. doi: 10.1142/S1793626812300125.

Copyright (c) 2016 Chernyaev A.P., Varzar' S.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies