“SMART” LASER SCALPELS FOR ROBOTIC SURGERY

Cover Page


Cite item

Full Text

Abstract

Background: Elaboration of automatized and robotic systems for precision and minimally traumatic surgery is one of the main areas of modern surgery. The concept of the so-called “smart” laser scalpels seems a  promising technical solution in this field. Aim: To develop organizational principles of a  feedback smart surgical laser devices based on CO₂ and fiber lasers. Materials and methods: As laser sources, we used a one mode wave CO₂ laser with a power of up to 25 W, high frequency pumping of the active media and radiation wavelength of 10.6 mcm, as well as a one mode fiber Er laser with a power of up to 5 W and radiation wavelength of 1.54  mcm. The laser device feedback was organized with an autodynic control of laser evaporation of biological tissues. The “smart” laser scalpel effects were studied in the porcine tissues in  vitro. The feedback laser devices were tested on normal and tumor animal tissues (white rats) in vitro and in vivo. Also, we tested the possibility of diagnostics of laser evaporation on human tumor tissues. Results: Taking the one mode CO₂ laser and one mode fiber Er laser as examples, it was shown that an autodynic signal arising during evaporation of various biological tissues has different spectral characteristics. This makes the bases for organization of a  feedback in surgical devices functioning as a  “smart” scalpel. A “smart” surgical feedback device based on CO₂ laser and a  decoy of a  “smart” surgical device based on a fiber Er laser were developed. We studied the possibilities of differential diagnostics of a type of a tissue being evaporated in vitro with the use of the data from laser scalpels. Also, pre-clinical trials of a CO₂ laser-based “smart” surgical device on biological tissues were performed. The trials showed that such a “smart” laser scalpel allows for intra-operative differentiation between normal and tumor tissues that would give the possibility to implement minimally traumatic surgery principles. Conclusion: The method of autodynic diagnostics of laser evaporation of biological tissues allows for development of surgical devices functioning as a “smart” laser. It gives the possibility of a real-time differentiation of various types of tissues, including normal and tumor ones.

About the authors

A. K. Dmitriev

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 1 Svyatoozerskaya ul., Shatura, Moskovskaya oblast', 140700, Russian Federation

Email: alex_konov@mail.ru
Research Fellow Россия

A. N. Konovalov

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 1 Svyatoozerskaya ul., Shatura, Moskovskaya oblast', 140700, Russian Federation

Author for correspondence.
Email: alex_konov@mail.ru
PhD (in Physics and Mathematics), Senior Research Fellow Россия

V. N. Kortunov

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 1 Svyatoozerskaya ul., Shatura, Moskovskaya oblast', 140700, Russian Federation

Email: alex_konov@mail.ru
Research Fellow Россия

V. A. Ul'yanov

Institute of Laser and Information Technologies of the Russian Academy of Sciences; 1 Svyatoozerskaya ul., Shatura, Moskovskaya oblast', 140700, Russian Federation

Email: alex_konov@mail.ru
PhD (in Engineering), Deputy Director Россия

References

  1. Ota T, Degani A, Schwartzman D, Zubiate B, McGarvey J, Choset H, Zenati MA. A highly articulated robotic surgical system for minimally invasive surgery. Ann Thorac Surg. 2009;87(4):1253–6. doi: 10.1016/j. athoracsur.2008.10.026.
  2. Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H, Zenati M, Tully S, Duvvuri U. A transoral highly flexible robot: Novel technology and application. Laryngoscope. 2012;122(5):1067–71. doi: 10.1002/lary.23237.
  3. Краевский СВ, Рогаткин ДА. Медицинская робототехника: первые шаги медицинских роботов. Технологии живых систем. 2010;7(4):3–14.
  4. Неворотин АИ. Введение в лазерную хирургию. СПб.: СпецЛит; 2000. 176 с.
  5. Минаев ВП. Лазерные аппараты для хирургии и силовой терапии: вчера, сегодня, завтра. Лазерная медицина. 2012;16(3): 57–65.
  6. Urich A, Maier RRJ, Fei Yu, Knight JC, Hand DP, Shephard JD. Silica hollow core microstructured fibres for mid-infrared surgical applications. Journal of Non-Crystalline Solids. 2013;377:236–9. doi: 10.1016/j.jnoncrysol.2013.01.055.
  7. Минаев ВП, Жилин КМ. Современные лазерные аппараты для хирургии и силовой терапии на основе полупроводниковых и волоконных лазеров. М.: Издатель И.В. Балабанов; 2009. 48 с.
  8. Кортунов ВН, Дмитриев АК, Коновалов АН, Ульянов ВА. Интеллектуальные СО₂ лазер- ные хирургические системы для прецизионного удаления новообразований. Онко-хирургия. 2010;2(1):187–8.
  9. Дмитриев АК, Коновалов АН, Панченко ВЯ, Ульянов ВА, Варев ГА, Гейниц АВ, Маторин ОВ, Решетов ИВ, Самошенков ГС. Новые подходы к прецизионному и малотравматичному испарению биотканей на основе интеллектуальных лазерных хирургических систем. Лазерная медицина. 2013;17(1):4–10.
  10. Гордиенко ВМ, Коновалов АН, Ульянов ВА. Самогетеродинирование обратно рассеянного излучения в одномодовых CO₂-лазерах. Квантовая электроника. 2011;41(5): 433–40.
  11. Дмитриев АК, Коновалов AН, Ульянов ВА. Самогетеродинирование обратнорассеянного излучения в одномодовом волоконном эрбиевом лазере для задач доплеровской спектроскопии и измерения скоростей. Квантовая электроника. 2014;44(4):309–13.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Dmitriev A.K., Konovalov A.N., Kortunov V.N., Ul'yanov V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies