Expression of the immune checkpoint B7-H3 in tumor and its soluble form in serum of patients with bone neoplasms

Cover Page


Cite item

Full Text

Abstract

B7-H3, also called CD276, is a type I transmembrane glycoprotein that is encoded on human chromosome 15. It was discovered back in 2001. The original study described it as a positive co-stimulant, as it can stimulate T-cell response and IFN-y production. However, recent researches have shown that B7-H3 is involved in T-cell inhibition. A B7-H3 receptor has not been yet identified, and this may explain the complex immunomodulatory activity of B7-H3, as it can have more than one binding partner with different functions. Expression of the B7-H3 protein has been found on activated immune cells such as T-cells, NK cells and antigen presenting cells. Interestingly, it is overexpressed in a wide range of tumor cells and is associated with disease progression and outcome. The soluble form of this protein is also of particular interest. Increased sB7-H3 levels in the plasma of bone tumor patients might be their important diagnostic criterion.

About the authors

N. E. Kushlinskii

N.N. Blokhin National Medical Research Center of Oncology

Author for correspondence.
Email: biochimia@yandex.ru
ORCID iD: 0000-0002-3898-4127

Nikolay E. Kushlinskii - MD, PhD, Professor, Member of Russian Academy of Sciences, Head of Laboratory of Clinical Biochemistry.

24 Kashirskoe shosse, Moscow, 115478.

Tel.: +7 (499) 324 11 59.

Russian Federation

O. V. Kovaleva

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0001-6132-9924

Olga V. Kovaleva - PhD (in Biol.), Senior Research Fellow, Laboratory of Regulation of Cellular and Viral Oncogenes, Research Institute of Carcinogenesis.

24 Kashirskoe shosse, Moscow, 115478.

Russian Federation

A. A. Alferov

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-3585-5693

Aleksandr A. Alferov - Clinical Pathologist, Laboratory of Clinical Biochemistry.

24 Kashirskoe shosse, Moscow, 115478.

Russian Federation

Yu. B. Kuzmin

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0001-9684-2509

Yurii B. Kuzmin - Research Laboratory Assistant, Laboratory of Clinical Biochemistry.

24 Kashirskoe shosse, Moscow, 115478.

Russian Federation

E. A. Sushentsov

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0003-3672-1742

Evgeny A. Sushentsov - MD, PhD, Head of Department of Surgical Treatment Methods No. 14 (Oncoorthopedics).

24 Kashirskoe shosse, Moscow, 115478.

Russian Federation

I. S. Stilidi

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0002-0493-1166

Ivan S. Stilidi - MD, PhD, Professor, Member of the Russian Academy of Sciences, Director.

24 Kashirskoe shosse, Moscow, 115478.

Russian Federation

References

  1. Соловьев ЮН. Патология опухолей костей: практическое руководство. М.: Практическая медицина; 2019. 272 с.
  2. Raymond AK, Ayala AG, Knuutila S. Conventional osteosarcoma. In: Fletcher CDM, Unni KK, Mertens F, editors. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. Lyon: IARC Press; 2002. p. 264-270.
  3. Angelini A, Guerra G, Mavrogenis AF, Pala E, Picci P, Ruggieri P. Clinical outcome of central conventional chondrosarcoma. J Surg Oncol. 2012;106(8):929-937. doi: 10.1002/jso.23173.
  4. Walcott BP, Nahed BV, Mohyeldin A, Coumans JV, Kahle KT, Ferreira MJ. Chordoma: current concepts, management, and future directions. Lancet Oncol. 2012;13(2):e69-e76. doi: 10.1016/S1470-2045(11)70337-0.
  5. Isakoff MS, Bielack SS, Meltzer P, Gorlick R. Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. J Clin Oncol. 2015;33(27):3029-3035. doi: 10.1200/JCO.2014.59.4895.
  6. Gelderblom AG, Bovee JVMG. Chondrosarcoma [Internet]. 2021 Feb. Available from: https://www.uptodate.com/contents/chon-drosarcoma.
  7. Grunewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Alava E, Kovar H, Sorensen PH, Delattre O, Dirksen U. Ewing sarcoma. Nat Rev Dis Primers. 2018;4(1):5. doi: 10.1038/s41572-018-0003-x.
  8. National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Bone and Joint Cancer [Internet]. Available from: https://seer.cancer.gov/statfacts/html/bones.html.
  9. Dean DC, Shen S, Hornicek FJ, Duan Z. From genomics to metabolomics: emerging metastatic biomarkers in osteosarcoma. Cancer Metastasis Rev. 2018;37(4):719-731. doi: 10.1007/s10555-018-9763-8.
  10. Thompson PA, Chintagumpala M. Targeted therapy in bone and soft tissue sarcoma in children and adolescents. Curr Oncol Rep. 2012;14(2):197-205. doi: 10.1007/s11912-012-0223-2.
  11. ESMO/European Sarcoma Network Working Group. Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 Suppl 3:iii113-iii123. doi: 10.1093/annonc/mdu256. Erratum in: Ann Oncol. 2015;26 Suppl 5:v174-v177.
  12. Casali PG, Bielack S, Abecassis N, Aro HT, Bauer S, Biagini R, Bonvalot S, Boukovinas I, Bovee JVMG, Brennan B, Brodowicz T, Broto JM, Brugieres L, Buonadonna A, De Alava E, Dei Tos AP, Del Muro XG, Dileo P, Dhooge C, Eriksson M, Fagioli F, Fedenko A, Ferraresi V, Ferrari A, Ferrari S, Frezza AM, Gaspar N, Gasp-eroni S, Gelderblom H, Gil T, Grignani G, Gronchi A, Haas RL, Hassan B, Hecker-Nolting S, Hohenberger P, Issels R, Joensuu H, Jones RL, Judson I, Jutte P, Kaal S, Kager L, Kasper B, Kopeckova K, Krakorova DA, Ladenstein R, Le Cesne A, Lugowska I, Merimsky O, Montemurro M, Morland B, Pantaleo MA, Piana R, Picci P, Piperno-Neumann S, Pousa AL, Reichardt P, Robinson MH, Rutkowski P, Safwat AA, Schoffski P, Sleijfer S, Stacchiotti S, Strauss SJ, Sundby Hall K, Unk M, Van Coevorden F, van der Graaf WTA, Whelan J, Wardelmann E, Zaikova O, Blay JY; ESMO Guidelines Committee, PaedCan and ERN EURACAN. Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Suppl 4):iv79-iv95. doi: 10.1093/annonc/mdy310.
  13. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7-30. doi: 10.3322/caac.21442.
  14. Anfinsen KP, Devesa SS, Bray F, Troisi R, Jonasdottir TJ, Bruland OS, Grotmol T. Age-period-cohort analysis of primary bone cancer incidence rates in the United States (1976-2005). Cancer Epidemiol Biomarkers Prev. 2011;20(8): 1770-1777. doi: 10.1158/1055-9965.EPI-11-0136.
  15. Joo MW, Shin SH, Kang YK, Kawai A, Kim HS, Asavamongkolkul A, Jeon DG, Kim JD, Niu X, Tsuchiya H, Puri A, Wang EH, Chung SH, Chung YG. Osteosarcoma in Asian Populations Over the Age of 40 Years: A Multicenter Study. Ann Surg Oncol. 2015;22(11):3557-3564. doi: 10.1245/s10434-015-4414-6.
  16. Valery PC, Laversanne M, Bray F. Bone cancer incidence by morphological subtype: a global assessment. Cancer Causes Control. 2015;26(8):1127-1139. doi: 10.1007/s10552-015-0607-3.
  17. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14(11):722-735. doi: 10.1038/nrc3838.
  18. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Pritchard J, Malpas JS, Baker AR, Kirkpatrick JA, et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 1986;314(25):1600-1606. doi: 10.1056/NEJM198606193142502.
  19. Rosen G, Murphy ML, Huvos AG, Gutierrez M, Marcove RC. Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer. 1976;37(1):1-11. doi: 10.1002/1097-0142(197601)37:1<1::aid-cn-cr2820370102>3.0.co;2-3.
  20. Hogendoorn PCW, Bovee JV, Nielsen GP. Chondrosarcoma (grades I-III), including primary and secondary variants and periosteal chondrosarcoma. In: Fletcher CD, Bridge JA, Hogendoorn PC, et al. editors. World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 264-268.
  21. Heck RK Jr, Peabody TD, Simon MA. Staging of primary malignancies of bone. CA Cancer J Clin. 2006;56(6):366-375. doi: 10.3322/canjclin.56.6.366.
  22. Ewing J. Diffuse endothelioma of bone. Proc NY Pathol Soc. 1921;21:17-24.
  23. Riggi N, Suva ML, Stamenkovic I. Ewing's Sarcoma. N Engl J Med. 2021;384(2):154-164. doi: 10.1056/NEJMra2028910.
  24. Kilpatrick SE, Reith JD, Rubin B. Ewing Sarcoma and the History of Similar and Possibly Related Small Round Cell Tumors: From Whence Have We Come and Where are We Going? Adv Anat Pathol. 2018;25(5):314-326. doi: 10.1097/PAP.0000000000000203.
  25. Семенова АИ. Саркома Юинга: характеристика заболевания, особенности диагностики, лечебная тактика. Практическая онкология. 2010;11(1):45—50.
  26. Самбурова НВ, Пименов ИА, Жевак ТН, Литвицкий ПФ. Саркома Юинга: молекулярно-генетические механизмы патогенеза. Вопросы современной педиатрии. 2019;18(4): 257-263. doi: 10.15690/vsp.v18i4.2042.
  27. Ross KA, Smyth NA, Murawski CD, Kennedy JG. The biology of Ewing sarcoma. ISRN Oncol. 2013;2013:759725. doi: 10.1155/2013/759725.
  28. Bellan DG, Filho RJ, Garcia JG, de Toledo Petrilli M, Maia Viola DC, Schoedl MF, Petrilli AS. Ewing's sarcoma: epidemiology and prognosis for patients treated at the Pediatric Oncology Institute, IOP-GRAACC-Unifesp. Rev Bras Or-top. 2015;47(4):446-450. doi: 10.1016/S2255-4971(15)30126-9.
  29. Травкина ЮВ, Жевак ТН, Литвицкий ПФ. Хордома: этиология, патогенез, диагностика, лечение. Вопросы современной педиатрии. 2018;17(4):266-271. doi: 10.15690/vsp.v17i4.1917.
  30. Whelan JS, Davis LE. Osteosarcoma, Chondrosarcoma, and Chordoma. J Clin Oncol. 2018;36(2):188-193. doi: 10.1200/JCO.2017.75.1743.
  31. Сидоркин ДВ, Коновалов АН, Махмудов УБ, Усачев ДЮ, Шкарубо АН, Шиманский ВН. Топографические варианты краниальных хордом. Вопросы нейрохирургии им. Н.Н. Бурденко. 2009;(3):14-18.
  32. Heffelfinger MJ, Dahlin DC, MacCa-rty CS, Beabout JW. Chordomas and cartilaginous tumors at the skull base. Cancer. 1973;32(2):410-420. doi: 10.1002/1097-0142(197308)32:2<410::aid-cn-cr2820320219>3.0.co;2-s.
  33. Flanagan AM, Yamaguchi T. Chordoma. In: Fletcher CDM, Bridge JA, Pancras CW, Mertens F, editors. World Health Organization (WHO) classification of tumours of soft tissue and bone. Pathology and Genetics. Lyon: IARC Press; 2013. p. 328e9.
  34. Lauer SR, Edgar MA, Gardner JM, Sebastian A, Weiss SW. Soft tissue chordomas: a clinicopathologic analysis of 11 cases. Am J Surg Pathol. 2013;37(5):719-726. doi: 10.1097/PAS.0b013e31827813e7.
  35. Kayani B, Sewell MD, Tan KA, Hanna SA, Williams R, Pollock R, Skinner J, Briggs TW. Prognostic Factors in the Operative Management of Sacral Chordomas. World Neuro-surg. 2015;84(5):1354-1361. doi: 10.1016/j.wneu.2015.06.030.
  36. Ariel IM, Verdu C. Chordoma: an analysis of twenty cases treated over a twenty-year span. J Surg Oncol. 1975;7(1):27-44. doi: 10.1002/jso.2930070106.
  37. Rich TA, Schiller A, Suit HD, Mankin HJ. Clinical and pathologic review of 48 cases of chordoma. Cancer. 1985;56(1):182-187. doi: 10.1002/1097-0142(19850701)56:1<182::aid-cncr2820560131>3.0.co;2-j.
  38. Yonemoto T, Tatezaki S, Takenouchi T, Ishii T, Satoh T, Moriya H. The surgical management of sacrococcygeal chordoma. Cancer. 1999;85(4): 878-883.
  39. Bergh P, Kindblom LG, Gunterberg B, Remotti F, Ryd W, Meis-Kindblom JM. Prognostic factors in chordoma of the sacrum and mobile spine: a study of 39 patients. Cancer. 2000;88(9): 2122-2134. doi: 10.1002/(sici)1097-0142(20000501)88:9<2122::aid-cncr19>3.0.co;2-1.
  40. Baratti D, Gronchi A, Pennacchioli E, Lozza L, Colecchia M, Fiore M, Santinami M. Chordoma: natural history and results in 28 patients treated at a single institution. Ann Surg Oncol. 2003;10(3):291-296. doi: 10.1245/aso.2003.06.002.
  41. Bernardini G, Laschi M, Geminiani M, Santucci A. Proteomics of osteosarcoma. Expert Rev Proteomics. 2014;11(3):331-343. doi: 10.1586/14789450.2014.900445.
  42. Ram Kumar RM, Boro A, Fuchs B. Involvement and Clinical Aspects of MicroRNA in Osteosarcoma. Int J Mol Sci. 2016;17(6):877. doi: 10.3390/ijms17060877.
  43. Pujari-Palmer M, Pujari-Palmer S, Lu X, Lind T, Melhus H, Engstrand T, Karlsson-Ott M, Engqvist H. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts. PLoS One. 2016;11(10):e0163530. doi: 10.1371/journal.pone.0163530.
  44. Kim SH, Shin KH, Moon SH, Jang J, Kim HS, Suh JS, Yang WI. Reassessment of alkaline phosphatase as serum tumor marker with high specificity in osteosarcoma. Cancer Med. 2017;6(6):1311-1322. doi: 10.1002/cam4.1022.
  45. Chavin G, Sheinin Y, Crispen PL, Boorjian SA, Roth TJ, Rangel L, Blute ML, Sebo TJ, Tindall DJ, Kwon ED, Karnes RJ. Expression of immuno-suppresive B7-H3 ligand by hormone-treat-ed prostate cancer tumors and metastases. Clin Cancer Res. 2009;15(6):2174-2180. doi: 10.1158/1078-0432.CCR-08-2262.
  46. Wang L, Zhang Q, Chen W, Shan B, Ding Y, Zhang G, Cao N, Liu L, Zhang Y. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One. 2013;8(8):e70689. doi: 10.1371/journal.pone.0070689.
  47. Maeda N, Yoshimura K, Yamamoto S, Kuramasu A, Inoue M, Suzuki N, Watanabe Y, Maeda Y, Kamei R, Tsunedomi R, Shindo Y, Inui M, Tamada K, Yoshino S, Hazama S, Oka M. Expression of B7-H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann Surg Oncol. 2014;21 Suppl 4(Suppl 4):S546-S554. doi: 10.1245/s10434-014-3564-2.
  48. Kang FB, Wang L, Jia HC, Li D, Li HJ, Zhang YG, Sun DX. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int. 2015;15:45. doi: 10.1186/s12935-015-0195-z.
  49. Fernandez L, Metais JY, Escudero A, Vela M, Valenti'n J, Vallcorba I, Leivas A, Torres J, Valeri A, Patino-Garda A, Marti'nez J, Leung W, Perez-Marti'nez A. Memory T Cells Expressing an NKG2D-CAR Efficiently Target Osteosarcoma Cells. Clin Cancer Res. 2017;23(19):5824-5835. doi: 10.1158/1078-0432.CCR-17-0075.
  50. McEachron TA, Triche TJ, Sorenson L, Parham DM, Carpten JD. Profiling targetable immune checkpoints in osteosarcoma. Oncoimmunology. 2018;7(12):e1475873. doi: 10.1080/2162402X.2018.1475873.
  51. Zang X, Loke P, Kim J, Murphy K, Waitz R, Allison JP. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A. 2003;100(18):10388-10392. doi: 10.1073/pnas.1434299100.
  52. Zhao R, Chinai JM, Buhl S, Scandiuzzi L, Ray A, Jeon H, Ohaegbulam KC, Ghosh K, Zhao A, Scharff MD, Zang X. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci U S A. 2013;110(24):9879-9884. doi: 10.1073/pnas.1303524110.
  53. Janakiram M, Shah UA, Liu W, Zhao A, Schoenberg MP, Zang X. The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3. Immunol Rev. 2017;276(1):26-39. doi: 10.1111/imr.12521.
  54. Wang L, Kang FB, Shan BE. B7-H3-mediated tumor immunology: Friend or foe? Int J Cancer. 2014;134(12):2764-2771. doi: 10.1002/ijc.28474.
  55. Loos M, Hedderich DM, Friess H, Kleeff J. B7-h3 and its role in antitumor immunity. Clin Dev Immunol. 2010;2010:683875. doi: 10.1155/2010/683875.
  56. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K, Chen L. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol. 2001;2(3):269-274. doi: 10.1038/85339.
  57. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Duncan GS, Bukczynski J, Plyte S, Elia A, Wakeham A, Itie A, Chung S, Da Costa J, Arya S, Horan T, Campbell P, Gai-da K, Ohashi PS, Watts TH, Yoshinaga SK, Bray MR, Jordana M, Mak TW. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol. 2003;4(9):899-906. doi: 10.1038/ni967.
  58. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515-548. doi: 10.1146/annurev.immunol.23.021704.115611.
  59. Calabro L, Sigalotti L, Fonsatti E, Bertocci E, Di Giacomo AM, Danielli R, Cutaia O, Colizzi F, Covre A, Mutti L, Natali PG, Maio M. Expression and regulation of B7-H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: immunotherapeutic implications. J Cell Physiol. 2011;226(10):2595-2600. doi: 10.1002/jcp.22600.
  60. Hofmeyer KA, Ray A, Zang X. The contrasting role of B7-H3. Proc Natl Acad Sci U S A. 2008;105(30):10277-10278. doi: 10.1073/pnas.0805458105.
  61. Xu H, Cheung IY, Guo HF, Cheung NK. Micro-RNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res. 2009;69(15):6275-6281. doi: 10.1158/0008-5472.CAN-08-4517.
  62. Gao B, Chen H, Shi Z, Sun J, Yan R, Fu F, Zhang X. MiR-29a inhibited costimulatory molecule B7-H3 expression and the invasion of glioma growth. Chin J Cancer Biother. 2015;22(1):28-33. doi: 10.3872/j.issn.1007-385X.2015.1.005.
  63. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1(9):793-801. doi: 10.1016/s1074-7613(94)80021-9. Erratum in: Immunity. 1995;2(2):following 203.
  64. Brandt CS, Baratin M, Yi EC, Kennedy J, Gao Z, Fox B, Haldeman B, Ostrander CD, Kaifu T, Chabannon C, Moretta A, West R, Xu W, Vivier E, Levin SD. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med. 2009;206(7):1495-1503. doi: 10.1084/jem.20090681.
  65. Hashiguchi M, Kobori H, Ritprajak P, Kamimura Y, Kozono H, Azuma M. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc Natl Acad Sci U S A. 2008;105(30):10495-10500. doi: 10.1073/pnas.0802423105. Erratum in: Proc Natl Acad Sci U S A. 2008;105(38):14744.
  66. Hashiguchi M. Human B7-H3 binds to Triggering receptor expressed on myeloid cells-like transcript 2 (TLT-2) and enhances T cell responses. Open J Immunol. 2012;2(1):9-16. doi: 10.4236/oji.2012.21002.
  67. Leitner J, Klauser C, Pickl WF, Stockl J, Majdic O, Bardet AF, Kreil DP, Dong C, Yamazaki T, Zlabinger G, Pfistershammer K, Steinberger P. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur J Immunol. 2009;39(7): 1754-1764. doi: 10.1002/eji.200839028.
  68. Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, Zang X, Nathenson SG, Almo SC. Structure and T cell inhibition properties of B7 family member, B7-H3. Structure. 2013;21(5):707-717. doi: 10.1016/j.str.2013.03.003.
  69. Lupu CM, Eisenbach C, Lupu AD, Kuefner MA, Hoyler B, Stremmel W, Encke J. Adenoviral B7-H3 therapy induces tumor specific immune responses and reduces secondary metastasis in a murine model of colon cancer. Oncol Rep. 2007;18(3):745-748.
  70. Lupu CM, Eisenbach C, Kuefner MA, Schmidt J, Lupu AD, Stremmel W, Encke J. An orthotopic colon cancer model for studying the B7-H3 antitumor effect in vivo. J Gastrointest Surg. 2006;10(5):635-645. doi: 10.1007/BF03239969.
  71. Chen JT, Chen CH, Ku KL, Hsiao M, Chiang CP, Hsu TL, Chen MH, Wong CH. Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc Natl Acad Sci U S A. 2015;112(42): 13057-13062. doi: 10.1073/pnas.1516991112.
  72. Chen YW, Tekle C, Fodstad O. The immunoregulatory protein human B7H3 is a tumor-associated antigen that regulates tumor cell migration and invasion. Curr Cancer Drug Targets. 2008;8(5):404-413. doi: 10.2174/156800908785133141.
  73. Yin SJ, Wang WJ, Zhang JY. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet Mol Res. 2015;14(4):14253-14261. doi: 10.4238/2015.November.13.9.
  74. Roth TJ, Sheinin Y, Lohse CM, Kuntz SM, Frigo-la X, Inman BA, Krambeck AE, McKenney ME, Karnes RJ, Blute ML, Cheville JC, Sebo TJ, Kwon ED. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 2007;67(16): 7893-7900. doi: 10.1158/0008-5472.CAN-07-1068.
  75. Zang X, Thompson RH, Al-Ahmadie HA, Serio AM, Reuter VE, Eastham JA, Scardino PT, Sharma P, Allison JP. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A. 2007;104(49):19458-19463. doi: 10.1073/pnas.0709802104.
  76. Xylinas E, Robinson BD, Kluth LA, Volkmer BG, Hautmann R, Kufer R, Zerbib M, Kwon E, Thompson RH, Boorjian SA, Shariat SF. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol. 2014;40(1):121-127. doi: 10.1016/j.ejso.2013.08.023.
  77. Boorjian SA, Sheinin Y, Crispen PL, Farmer SA, Lohse CM, Kuntz SM, Leibovich BC, Kwon ED, Frank I. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008;14(15):4800-4808. doi: 10.1158/1078-0432.CCR-08-0731.
  78. Liu C, Liu J, Wang J, Liu Y, Zhang F, Lin W, Gao A, Sun M, Wang Y, Sun Y. B7-H3 expression in ductal and lobular breast cancer and its association with IL-10. Mol Med Rep. 2013;7(1): 134-138. doi: 10.3892/mmr.2012.1158.
  79. Sun J, Guo YD, Li XN, Zhang YQ, Gu L, Wu PP, Bai GH, Xiao Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. Onco Targets Ther. 2014;7:1979-1986. doi: 10.2147/OTT.S63424.
  80. Zang X, Sullivan PS, Soslow RA, Waitz R, Reuter VE, Wilton A, Thaler HT, Arul M, Slovin SF, Wei J, Spriggs DR, Dupont J, Allison JP. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod Pathol. 2010;23(8):1104-1112. doi: 10.1038/modpathol.2010.95.
  81. Brunner A, Hinterholzer S, Riss P, Heinze G, Brustmann H. Immunoexpression of B7-H3 in endometrial cancer: relation to tumor T-cell infiltration and prognosis. Gynecol Oncol. 2012;124(1):105-111. doi: 10.1016/j.ygy-no.2011.09.012.
  82. Huang C, Zhou L, Chang X, Pang X, Zhang H, Zhang S. B7-H3, B7-H4, Foxp3 and IL-2 expression in cervical cancer: Associations with patient outcome and clinical significance. Oncol Rep. 2016;35(4):2183-2190. doi: 10.3892/or.2016.4607.
  83. Wu CP, Jiang JT, Tan M, Zhu YB, Ji M, Xu KF, Zhao JM, Zhang GB, Zhang XG. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J Gastroenterol. 2006;12(3): 457-459. doi: 10.3748/wjg.v12.i3.457.
  84. Loos M, Hedderich DM, Ottenhausen M, Giese NA, Laschinger M, Esposito I, Kleeff J, Friess H. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC Cancer. 2009;9:463. doi: 10.1186/1471-2407-9-463.
  85. Yamato I, Sho M, Nomi T, Akahori T, Shimada K, Hotta K, Kanehiro H, Konishi N, Yagita H, Nakajima Y. Clinical importance of B7-H3 expression in human pancreatic cancer. Br J Cancer. 2009;101(10):1709-1716. doi: 10.1038/sj.bjc.6605375.
  86. Sun J, Chen LJ, Zhang GB, Jiang JT, Zhu M, Tan Y, Wang HT, Lu BF, Zhang XG. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol Immunother. 2010;59(8): 1163-1171. doi: 10.1007/s00262-010-0841-1.
  87. Al-Sukaini A, Hornicek FJ, Peacock ZS, Kaban LB, Ferrone S, Schwab JH. Immune Surveillance Plays a Role in Locally Aggressive Giant Cell Lesions of Bone. Clin Orthop Relat Res. 2017;475(12):3071-3081. doi: 10.1007/s11999-017-5451-1.
  88. Crispen PL, Sheinin Y, Roth TJ, Lohse CM, Kuntz SM, Frigola X, Thompson RH, Boor-jian SA, Dong H, Leibovich BC, Blute ML, Kwon ED. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res. 2008;14(16):5150-5157. doi: 10.1158/1078-0432.CCR-08-0536.
  89. Qin X, Zhang H, Ye D, Dai B, Zhu Y, Shi G. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. Onco Targets Ther. 2013;6:1667-1673. doi: 10.2147/OTT.S53565.
  90. Sun Y, Wang Y, Zhao J, Gu M, Giscombe R, Lefvert AK, Wang X. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer. 2006;53(2):143-151. doi: 10.1016/j.lung-can.2006.05.012.
  91. Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, Duan W, Zhou X, Liang R, Tao M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. On-cotarget. 2015;6(5):3452-3461. doi: 10.18632/oncotarget.3097.
  92. Baral A, Ye HX, Jiang PC, Yao Y, Mao Y. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients. Oncol Lett. 2014;8(3): 1195-1201. doi: 10.3892/ol.2014.2268.
  93. Picarda E, Ohaegbulam KC, Zang X. Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin Cancer Res. 2016;22(14):3425-3431. doi: 10.1158/1078-0432.CCR-15-2428.
  94. Sun TW, Gao Q, Qiu SJ, Zhou J, Wang XY, Yi Y, Shi JY, Xu YF, Shi YH, Song K, Xiao YS, Fan J. B7-H3 is expressed in human hepatocellular carcinoma and is associated with tumor aggressiveness and postoperative recurrence. Cancer Immunol Immunother. 2012;61(11): 2171-2182. doi: 10.1007/s00262-012-1278-5.
  95. Li Y, Guo G, Song J, Cai Z, Yang J, Chen Z, Wang Y, Huang Y, Gao Q. B7-H3 Promotes the Migration and Invasion of Human Bladder Cancer Cells via the PI3K/Akt/STAT3 Signaling Pathway. J Cancer. 2017;8(5):816-824. doi: 10.7150/jca.17759.
  96. Zhang T, Jiang B, Zou ST, Liu F, Hua D. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3. World J Gastroenterol. 2015;21(6):1804-1813. doi: 10.3748/wjg.v21.i6.1804.
  97. Kreymborg K, Haak S, Murali R, Wei J, Waitz R, Gasteiger G, Savage PA, van den Brink MR, Allison JP. Ablation of B7-H3 but Not B7-H4 Results in Highly Increased Tumor Burden in a Murine Model of Spontaneous Prostate Cancer. Cancer Immunol Res. 2015;3(8):849-854. doi: 10.1158/2326-6066.CIR-15-0100.
  98. Tekle C, Nygren MK, Chen YW, Dybsjord I, Nesland JM, Maelandsmo GM, Fodstad O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int J Cancer. 2012;130(10):2282-2290. doi: 10.1002/ijc.26238.
  99. Ling V, Wu PW, Spaulding V, Kieleczawa J, Luxenberg D, Carreno BM, Collins M. Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics. 2003;82(3):365-377. doi: 10.1016/s0888-7543(03)00126-5.
  100. Gregorio A, Corrias MV, Castriconi R, Dondero A, Mosconi M, Gambini C, Moretta A, Moretta L, Bottino C. Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. 2008;53(1):73-80. doi: 10.1111/j.1365-2559.2008.03070.x.
  101. Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, Schnolzer M, Tudoran R, Weller M, Platten M, Wick W. Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res. 2012;18(1):105-117. doi: 10.1158/1078-0432.CCR-11-0880.
  102. Zhang W, Wang J, Wang Y, Dong F, Zhu M, Wan W, Li H, Wu F, Yan X, Ke X. B7-H3 silencing by RNAi inhibits tumor progression and enhances chemosensitivity in U937 cells. Onco Targets Ther. 2015;8:1721-1733. doi: 10.2147/OTT.S85272.
  103. Sun X, Vale M, Leung E, Kanwar JR, Gupta R, Krissansen GW. Mouse B7-H3 induces antitumor immunity. Gene Ther. 2003;10(20):1728-1734. doi: 10.1038/sj.gt.3302070.
  104. Wu CP, Jiang JT, Tan M, Zhu YB, Ji M, Xu KF, Zhao JM, Zhang GB, Zhang XG. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J Gastroenterol. 2006;12(3): 457-459. doi: 10.3748/wjg.v12.i3.457.
  105. Wang L, Kang FB, Sun N, Wang J, Chen W, Li D, Shan BE. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol. 2016;37(11):14939-14947. doi: 10.1007/s13277-016-5386-2.
  106. Wang L, Kang FB, Zhang GC, Wang J, Xie MF, Zhang YZ. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell Int. 2018;18:115. doi: 10.1186/s12935-018-0614-z.
  107. Larsson SE, Lorentzon R, Boquist L. Giant-cell tumor of bone. A demographic, clinical, and histopathological study of all cases recorded in the Swedish Cancer Registry for the years 1958 through 1968. J Bone Joint Surg Am. 1975;57(2):167-173.
  108. Tsukahara T, Emori M, Murata K, Mizushima E, Shibayama Y, Kubo T, Kanaseki T, Hirohashi Y, Yamashita T, Sato N, Torigoe T. The future of immunotherapy for sarcoma. Expert Opin Biol Ther. 2016;16(8):1049-1057. doi: 10.1080/14712598.2016.1188075.
  109. Kabir TF, Chauhan A, Anthony L, Hildebrandt GC. Immune Checkpoint Inhibitors in Pediatric Solid Tumors: Status in 2018. Ochs-ner J. 2018;18(4):370-376. doi: 10.31486/toj.18.0055.
  110. Huang HF, Zhu H, Yang XT, Guo XY, Li SS, Xie Q, Tian XB, Yang Z. [Progress in research on tumor immune PD-1/PD-L1 signaling pathway in malignant bone tumors]. Zhonghua Zhong Liu Za Zhi. 2019;41(6):410-414. Chinese. doi: 10.3760/cma.j.issn.0253-3766.2019.06.003.
  111. Zhang G, Hou J, Shi J, Yu G, Lu B, Zhang X. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology. 2008;123(4):538-546. doi: 10.1111/j.1365-2567.2007.02723.x.
  112. Xie C, Liu D, Chen Q, Yang C, Wang B, Wu H. Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-KB pathway. Sci Rep. 2016;6:27528. doi: 10.1038/srep27528.
  113. Chen L, Zhang G, Sheng S, Zhou Q, Pan Y, Guan S. Upregulation of soluble B7-H3 in NS-CLC-derived malignant pleural effusion: A potential diagnostic biomarker correlated with NSCLC staging. Clin Chim Acta. 2016;457:81-85. doi: 10.1016/j.cca.2016.04.009.
  114. Benzon B, Zhao SG, Haffner MC, Takhar M, Erho N, Yousefi K, Hurley P, Bishop JL, Tosoian J, Ghabili K, Alshalalfa M, Glavaris S, Simons BW, Tran P, Davicioni E, Karnes RJ, Boudadi K, Antonarakis ES, Schaeffer EM, Drake CG, Feng F, Ross AE. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis. 2017;20(1):28-35. doi: 10.1038/pcan.2016.49.
  115. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39. doi: 10.1186/s13045-018-0582-8.
  116. Ahmed M, Cheng M, Zhao Q, Goldgur Y, Cheal SM, Guo HF, Larson SM, Cheung NK. Humanized Affinity-matured Monoclonal Antibody 8H9 Has Potent Antitumor Activity and Binds to FG Loop of Tumor Antigen B7-H3. J Biol Chem. 2015;290(50):30O18-30029. doi: 10.1074/jbc.M115.679852.
  117. Kramer K, KushnerBH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P, Humm JL, Xu H, Wolden SL, Souweidane MM, Larson SM, Cheung NK. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97(3):409-418. doi: 10.1007/s11060-009-0038-7.
  118. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, Carrasquillo JA, Lyashchenko SK, Thakur SB, Donzelli M, Turner RS, Lewis JS, Cheung NV, Larson SM, Dunkel IJ. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040-1050. doi: 10.1016/S1470-2045(18)30322-X. Erratum in: Lancet Oncol. 2018;19(8):e382.
  119. Liu H, Tekle C, Chen YW, Kristian A, Zhao Y, Zhou M, Liu Z, Ding Y, Wang B, Mælandsmo GM, Nesland JM, Fodstad O, Tan M. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol Cancer Ther. 2011;10(6):960-971. doi: 10.1158/1535-7163.MCT-11-0072.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kushlinskii N.E., Kovaleva O.V., Alferov A.A., Kuzmin Y.B., Sushentsov E.A., Stilidi I.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies