The potentiality of arterial spins labeling (ASL) magnetic resonance perfusion technique for the diagnosis of glioblastoma residual tissue

Cover Page


Cite item

Full Text

Abstract

Background: Growing glioblastoma is associated with an impairment of the blood brain barrier and increased hemodynamic parameters (CBV, CBF), which is related to advanced tumor angiogenesis. Arterial spin labeling (ASL) perfusion, an additional study to the routine intravenous contrast-enhanced magnetic resonance imaging (MRI), may be a technique for assessment of hemodynamics and identification of the residual tumor tissue.

Aim: To study the potential of native ASL to assess hemodynamic parameters and detect residual tumor tissue in the patients who had undergone surgical resection of glioblastoma.

Materials and methods: At 2 to 4  weeks after surgery for glioblastoma grade IV, brain MRI with native ASL perfusion and subsequent intravenous contrast enhancement was performed in 63  patients. Cerebral blood flow (CBF) values were measured in three areas of interest: in the presumptive tumor tissue (PTT) with maximal perfusion, in the postoperative scar tissue (PST) and in the deep white matter (DWM) of the contralateral hemisphere.

Results: According to their CBF values, all patients were categorized into two groups. Group 1 included 43  patients (68.3%) with mean CBF in PTT of 135.4±41.3  ml/100  Gr/min (min 73.9, max 255.9). These values were 5 to 6-fold higher than the CBF values in the PST and 6 to 8-fold higher than those in DWM. Group  2 included 20  patients (31.7%) without any areas of abnormal CBF increase in PST, with its mean value of 22.1±5.6  ml/100  Gr/min (min 13.9, max 37.1), which was close to the CBF level in DWM (19.8±4.6  ml/100  Gr/min, p=0.06). There were no between-group differences for the CBF values in PST (p=0.6), and DWM (p=0.7).

Conclusion: ASL MR perfusion technique has good potential for the identification of residual tumor tissue after surgical resection of glioblastoma and can be an alternative to contrast enhancement during long-term follow up.

About the authors

M. S. Bunak

Moscow Regional Research and Clinical Institute (MONIKI)

Author for correspondence.
Email: mark-bunak@mail.ru
ORCID iD: 0000-0001-6436-0249

Mark S. Bunak – Junior Research Fellow, Radiology Department

61/2–1 Shchepkina ul., Moscow, 129110

Россия

E. A. Stepanova

Moscow Regional Research and Clinical Institute (MONIKI)

Email: stepanovamoniki@gmail.com
ORCID iD: 0000-0002-9037-0034

Elena A. Stepanova – MD, PhD, Chief Research Fellow, Diagnostic Department

61/2 Shchepkina ul., Moscow, 129110

Россия

G. A. Stashuk

Moscow Regional Research and Clinical Institute (MONIKI)

Email: stashukmoniki@mail.ru
ORCID iD: 0000-0003-1058-0611

Galina A. Stashuk – MD, PhD, Head of Radiology Department No. 2

61/2 Shchepkina ul., Moscow, 129110

Россия

References

  1. Huang AP, Tsai JC, Kuo LT, Lee CW, Lai HS, Tsai LK, Huang SJ, Chen CM, Chen YS, Chuang HY, Wintermark M. Clinical application of perfusion computed tomography in neurosurgery. J Neurosurg. 2014;120(2):473–488. doi: 10.3171/2013.10.JNS13103.
  2. Ребрикова ВА, Сергеев НИ, Падалко BВ, Котляров ПМ, Солодкий ВА. Возможности МР-перфузии в оценке эффективности лечения злокачественных опухолей головного мозга. Вопросы нейрохирургии им. Н.Н. Бурденко. 2019;83(4):113–120. doi: 10.17116/neiro201983041113.
  3. Котляров ПМ, Нуднов НВ, Виниковецкая АВ, Егорова ЕВ, Альбицкий ИА, Овчинников ВИ, Гомболевский ВА. Перфузионная компьютерная томография в диагностике и оценке эффективности лечения злокачественных опухолей головного мозга. Лучевая диагностика и терапия. 2015;(2):63–69.
  4. Petersen ET, Mouridsen K, Golay X; all named co-authors of the QUASAR test-retest study. The QUASAR reproducibility study, Part II: Results from a multi-center Arterial Spin Labeling test-retest study. Neuroimage. 2010;49(1):104– 113. doi: 10.1016/j.neuroimage.2009.07.068.
  5. Gevers S, van Osch MJ, Bokkers RP, Kies DA, Teeuwisse WM, Majoie CB, Hendrikse J, Nederveen AJ. Intra- and multicenter reproducibility of pulsed, continuous and pseudo-continuous arterial spin labeling methods for measuring cerebral perfusion. J Cereb Blood Flow Metab. 2011;31(8):1706–1715. doi: 10.1038/jcbfm.2011.10.
  6. Claes A, Idema AJ, Wesseling P. Diffuse glioma growth: a guerilla war. Acta Neuropathol. 2007;114(5):443–458. doi: 10.1007/s00401-007-0293-7.
  7. Jain R. Perfusion CT imaging of brain tumors: an overview. AJNR Am J Neuroradiol. 2011;32(9): 1570–1577. doi: 10.3174/ajnr.A2263.
  8. Thomsen H, Steffensen E, Larsson EM. Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas. Acta Radiol. 2012;53(1):95–101. doi: 10.1258/ar.2011.110242.
  9. Paulson ES, Schmainda KM. Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology. 2008;249(2):601–613. doi: 10.1148/radiol.2492071659.
  10. Yang L, Krefting I, Gorovets A, Marzella L, Kaiser J, Boucher R, Rieves D. Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration. Radiology. 2012;265(1): 248–253. doi: 10.1148/radiol.12112783.
  11. Carlsson A, Starck G, Ljungberg M, Ekholm S, Forssell-Aronsson E. Accurate and sensitive measurements of magnetic susceptibility using echo planar imaging. Magn Reson Imaging. 2006;24(9):1179–1185. doi: 10.1016/j.mri.2006.07.005.
  12. Wong EC. An introduction to ASL labeling techniques. J Magn Reson Imaging. 2014;40(1): 1–10. doi: 10.1002/jmri.24565.
  13. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40(3): 383–396. doi: 10.1002/mrm.1910400308.
  14. Jiang J, Zhao L, Zhang Y, Zhang S, Yao Y, Qin Y, Wang CY, Zhu W. Comparative analysis of arterial spin labeling and dynamic susceptibility contrast perfusion imaging for quantitative perfusion measurements of brain tumors. Int J Clin Exp Pathol. 2014;7(6):2790–2799.
  15. Reginster P, Martin B, Denolin V. Comparative study of pseudo-continuous arterial spin labeling and dynamic susceptibility contrast imaging at 3.0 Tesla in brain tumors. Neurooncol Open Access. 2017;2(1):1–11. doi: 10.21767/2572-0376.100018.
  16. Ma H, Wang Z, Xu K, Shao Z, Yang C, Xu P, Liu X, Hu C, Lu X, Rong Y. Three-dimensional arterial spin labeling imaging and dynamic susceptibility contrast perfusion-weighted imaging value in diagnosing glioma grade prior to surgery. Exp Ther Med. 2017;13(6):2691–2698. doi: 10.3892/etm.2017.4370.
  17. Detre JA, Rao H, Wang DJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging. 2012;35(5): 1026–1037. doi: 10.1002/jmri.23581.
  18. Patel P, Baradaran H, Delgado D, Askin G, Christos P, John Tsiouris A, Gupta A. MR perfusion-weighted imaging in the evaluation of highgrade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol. 2017;19(1): 118–127. doi: 10.1093/neuonc/now148.
  19. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003;228(2):523–532. doi: 10.1148/radiol.2282020409.
  20. Баталов АИ, Захарова НЕ, Погосбекян ЭЛ, Фадеева ЛМ, Горяйнов СА, Баев АА, Шульц ЕИ, Чёлушкин ДМ, Потапов АА, Пронин ИН. Бесконтрастная ASL-перфузия в предоперационной диагностике супратенториальных глиом. Вопросы нейрохирургии им. Н.Н. Бурденко. 2018;82(6):15–22. doi: 10.17116/neiro20188206115.
  21. Yun TJ, Park CK, Kim TM, Lee SH, Kim JH, Sohn CH, Park SH, Kim IH, Choi SH. Glioblastoma treated with concurrent radiation therapy and temozolomide chemotherapy: differentiation of true progression from pseudoprogression with quantitative dynamic contrast-enhanced MR imaging. Radiology. 2015;274(3):830–840. doi: 10.1148/radiol.14132632.
  22. Park JE, Ryu KH, Kim HS, Kim HW, Shim WH, Jung SC, Choi CG, Kim SJ, Kim JH. Perfusion of surgical cavity wall enhancement in early post-treatment MR imaging may stratify the time-to-progression in glioblastoma. PLoS One. 2017;12(7):e0181933. doi: 10.1371/journal.pone.0181933.
  23. Chawla S, Wang S, Wolf RL, Woo JH, Wang J, O'Rourke DM, Judy KD, Grady MS, Melhem ER, Poptani H. Arterial spin-labeling and MR spectroscopy in the differentiation of gliomas. AJNR Am J Neuroradiol. 2007;28(9):1683–1689. doi: 10.3174/ajnr.A0673.
  24. Zeng Q, Jiang B, Shi F, Ling C, Dong F, Zhang J. 3D Pseudocontinuous Arterial Spin-Labeling MR Imaging in the Preoperative Evaluation of Gliomas. AJNR Am J Neuroradiol. 2017;38(10):1876–1883. doi: 10.3174/ajnr.A5299.
  25. Lindner T, Ahmeti H, Lübbing I, Helle M, Jansen O, Synowitz M, Ulmer S. Intraoperative resection control using arterial spin labeling – Proof of concept, reproducibility of data and initial results. Neuroimage Clin. 2017;15:136–142. doi: 10.1016/j.nicl.2017.04.021.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bunak M.S., Stepanova E.A., Stashuk G.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies