Proton magnetic resonance spectroscopy as an alternative method for quantitative assessment of mineral bone density

Cover Page

Cite item

Abstract

Aims: 1) To evaluate an association between the fat fraction (FF) and bone mineral density (BMD) measured by localized proton magnetic resonance spectroscopy (1H-MRS) and quantitative computed tomography (QCT) densitometry, respectively, in healthy vertebrae of children after a compression fracture; 2) To compare the FF and BMD values with the severity of the compression vertebrae fractures.

Materials and methods: Twenty (20) patients (aged 11.1±2.1 years) with a trauma-induced compression vertebral fractures participated in the study. The BMD of L3, L4 vertebrae (mg/cm3) was measured in by QCT (Philips Brilliance 16). FF in the same area was measured from 1H-MR-spectra (STEAM, echo time (TE)=12.8 ms, repetition time (TR)=3000 ms, voxel size=20×15×10 mm) using Philips Achieva TX 3.0T MRI scanner.

Results: Correlation analysis revealed a  significant inverse linear correlation (r=-0.55, p=0.0004) between FF and BMD of L3 и L4 vertebrae. In addition, in the patients with severe compression vertebral fracture (more than 2 fractured vertebrae) there was a  significant increase in FF values and a  BMD decrease, compared to the values in the patients with mild fractures (1–2 fractured vertebrae).

Conclusion: The correlation suggests that the increase of FF in the bone marrow and the decrease of BMD in children go in parallel. Therefore, 1H-MRS could be an alternative to QCT and dual-energy X-ray absorptiometry. The absence of radiation load allows for recommendation to use 1Н-MRS for screening and follow-up, as well as for the control of BMD.

About the authors

A. S. Ivantsova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Anna S. Ivantsova – Junior Research Fellow, Postgraduate Student 

22 Bol'shaya Polyanka ul., Moscow, 119180

Russian Federation

P. E. Menshchikov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma;
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;
Philips Healthcare LLC

Author for correspondence.
Email: petr.menshchikov@philips.com

Petr E. Menshchikov – PhD (in Phys. and Math.), Research Fellow, Department of Radiological Methods Clinical and Research Institute of Emergency Pediatric Surgery and Trauma; Junior Research Fellow N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Scientific Projects Support Specialist Philips Healthcare LLC

22 Bol'shaya Polyanka ul., Moscow, 119180;
4 Kosygina ul., Moscow, 119991;
13 Sergeya Makeeva ul., Moscow, 123022

Russian Federation

U. A. Polyakova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Ul'yana A. Polyakova – Radiologist, Department of Radiological Methods 

22 Bol'shaya Polyanka ul., Moscow, 119180

Russian Federation

A. V. Manzhurtsev

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma;
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: fake@neicon.ru

Andrey V. Manzhurtsev – PhD (in Phys. and Math.), Research Fellow, Department of Radiological Methods Clinical and Research Institute of Emergency Pediatric Surgery and Trauma; Junior Research Fellow, Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

22 Bol'shaya Polyanka ul., Moscow, 119180;
4 Kosygina ul., Moscow, 119991

Russian Federation

M. V. Ublinskiy

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma;
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: fake@neicon.ru
ORCID iD: 0000-0002-4627-9874

Maxim V. Ublinskiy – PhD (in Biol.), Research Fellow, Department of Radiological Methods Clinical and Research Institute of Emergency Pediatric Surgery and Trauma; Research Fellow Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

22 Bol'shaya Polyanka ul., Moscow, 119180;
4 Kosygina ul., Moscow, 119991

Russian Federation

T. A. Akhadov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Tolibdzhon A. Akhadov – MD, PhD, Professor, Head of Department of Radiological Methods 

22 Bol'shaya Polyanka ul., Moscow, 119180

Russian Federation

D. A. Kupriyanov

Philips Healthcare LLC

Email: fake@neicon.ru

Dmitriy A. Kupriyanov – PhD (in Phys. and Math.), Scientific Projects Support Senior Specialist

13 Sergeya Makeeva ul., Moscow, 123022

Russian Federation

N. A. Semenova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma;
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences;
Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

Email: fake@neicon.ru

Nataliya A. Semenova – Doctor of Biol. Sci., Chief Research Fellow Clinical and Research Institute of Emergency Pediatric Surgery and Trauma; Research Fellow N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Chief Research Fellow Emanuel Institute of Biochemical Physics of Russian Academy of Sciences

22 Bol'shaya Polyanka ul., Moscow, 119180;
4 Kosygina ul., Moscow, 119991;
4 Kosygina ul., Moscow, 119334

Russian Federation

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–795. doi: 10.1001/jama.285.6.785.
  2. Wang P, Abdin E, Shafie S, Chong SA, Vaingankar JA, Subramaniam M. Estimation of Prevalence of Osteoporosis Using OSTA and Its Correlation with Sociodemographic Factors, Disability and Comorbidities. Int J Environ Res Public Health. 2019;16(13):2338. doi: 10.3390/ijerph16132338.
  3. Мальцев СВ, Мансурова ГШ. Снижение минеральной плотности кости у детей и подростков: причины, частота развития, лечение. Вопросы современной педиатрии. 2015;14(5):573–578. doi: 10.15690/vsp.v14i5.1442.
  4. Струков ВИ, Сергеева-Кондраченко МЮ, Струкова-Джоунс ОВ, Галеева РТ, Радченко ЛГ, Гербель МН, Шурыгина ЕБ, Романовская ЛД, Еремина НВ, Вирясова НА. Актуальные проблемы остеопороза: монография. Пенза: Ростра; 2009. 342 с.
  5. Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. Semin Nucl Med. 2010;40(1):62–73. doi: 10.1053/j.semnuclmed.2009.08.001.
  6. Adams JE. Quantitative computed tomography. Eur J Radiol. 2009;71(3):415–424. doi: 10.1016/j.ejrad.2009.04.074.
  7. Tavassoli M, Crosby WH. Bone marrow histogenesis: a comparison of fatty and red marrow. Science. 1970;169(3942):291–293. doi: 10.1126/science.169.3942.291.
  8. Gatter K, Brown D. Bone marrow diagnosis: An illustrated guide, 3rd edition. Chichester: Wiley-Blackwell; 2014. 232 p.
  9. Shih TT, Chang CJ, Hsu CY, Wei SY, Su KC, Chung HW. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine. Spine (Phila Pa 1976). 2004;29(24):2844–2850. doi: 10.1097/01.brs.0000147803.01224.5b.
  10. Karampinos DC, Ruschke S, Gordijenko O, Grande Garcia E, Kooijman H, Burgkart R, Rummeny EJ, Bauer JS, Baum T. Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos. 2015;2015:152349. doi: 10.1155/2015/152349.
  11. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35(1): 117–124. doi: 10.1002/jmri.22757.
  12. Lee SH, Yoo HJ, Yu SM, Hong SH, Choi JY, Chae HD. Fat quantification in the vertebral body: comparison of modified dixon technique with single-voxel magnetic resonance spectroscopy. Korean J Radiol. 2019;20(1): 126–133. doi: 10.3348/kjr.2018.0174.
  13. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–951. doi: 10.1148/radiol.2363041425.
  14. Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, Leung PC. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–838. doi: 10.1148/radiol.2413051858.
  15. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol. 1967;94(2):275–291. doi: 10.1002/path.1700940205.
  16. Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–154. doi: 10.1097/00003086-197110000-00021.
  17. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A. Marrow fat and bone – new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–945. doi: 10.1210/jc.2012-3634.
  18. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J Cell Biochem. 2006;98(2):251–266. doi: 10.1002/jcb.20777.
  19. Duque G. Bone and fat connection in aging bone. Curr Opin Rheumatol. 2008;20(4):429– 434. doi: 10.1097/BOR.0b013e3283025e9c.
  20. Chan BY, Gill KG, Rebsamen SL, Nguyen JC. MR Imaging of Pediatric Bone Marrow. Radiographics. 2016;36(6):1911–1930. doi: 10.1148/rg.2016160056.
  21. Ruschke S, Pokorney A, Baum T, Eggers H, Miller JH, Hu HH, Karampinos DC. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water-fat MRI. MAGMA. 2017;30(5):449–460. doi: 10.1007/s10334-017-0617-0.
  22. Spector TD, McCloskey EV, Doyle DV, Kanis JA. Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study. J Bone Miner Res. 1993;8(7):817–822. doi: 10.1002/jbmr.5650080707.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Ivantsova A.S., Menshchikov P.E., Polyakova U.A., Manzhurtsev A.V., Ublinskiy M.V., Akhadov T.A., Kupriyanov D.A., Semenova N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies