Changes in the morphology of erythrocytes after in vitro exposure of blood to carbon monoxide

Cover Page

Cite item

Abstract

Background: One of the pathological effects of carbon monoxide (CO) on blood is the formation of carboxyhemoglobin. Carboxyhemoglobin completely blocks oxygen transfer; therefore, there is a net decrease in oxygen transport by red blood cells potentially resulting in tissue hypoxia. The effects of CO on blood can also damage cell membranes. Atomic force microscopy (AFM) has been recognized as effective for investigation into the mechanisms of structural damage in erythrocyte membranes. Aim: By means of AFM, to identify characteristics of changes in morphology and aggregation of erythrocytes exposed to CO in vitro.

Materials and methods: All experiments were performed in vitro. We studied the morphology of erythrocytes and their aggregates with AFM. Blood sampling (150 μl) in microvettes with EDTA (Sarstedt AG & Co., Germany) was carried out during a prophylactic work-up of 5 volunteers. To obtain CO in a test tube, formic acid was mixed with sulfuric acid 1:1. Blood levels of carboxyhemoglobin were measured by spectrophotometry. A nonlinear fitting method of the experimental spectra was used to calculate the concentrations of hemoglobin derivatives in blood. Statistical analysis was done with the Origin software (OriginLab Corporation, Northampton, MA, USA).

Results: After CO exposure, a shift in peaks was observed. At exposure time t₂=320 s, the percentage of carboxyhemoglobin (CHbCO) was 88±2%. As a result of blood exposure to CO, at t₁=160 s 10% of the cells differed in their shape from discocytes, whereas at t₂=320 s their proportion was 38%. With increasing duration of exposure to CO, erythrocyte aggregation occurred with formation of their large conglomerates up to 30 μm in size. In the control smear, the proportion of discocytes was 96±2%, and the remaining 4±1% of the cells had the form of echinocytes. The cell diameter (Dcont) was in the range 7.5±0.8 μm. After blood exposure to CO at t₁=160 s in the monolayer, 28±5% of cells had a diameter less than<5.7 μm. After CO exposure at t₂=320 s, the proportion of cells with a diameter of less than<5.7 μm increased to 72±11%.

Conclusion: The experiments have shown that blood exposure to CO changed the morphology of erythrocytes. The formation of interconnected structures made of red blood cells was observed. With increased time of exposure, erythrocytes demonstrated aggregation with conglomerate formation.

About the authors

E. K. Kozlova

I.M. Sechenov First Moscow State Medical University; V.A. Negovsky Research Institute of General Reanimatology

Author for correspondence.
Email: waterlake@mail.ru
ORCID iD: 0000-0002-1780-895X

Elena K. Kozlova – Doctor of Phys. and Math. Sci., Professor, Chair of Medical and Biological Physics I.M. Sechenov FMSMU; Leading Research Fellow, Laboratory of Biophysics of Cells Membranes in Critical States V.A. Negovsky RIGR.

8/2 Trubetskaya ul., Moscow, 119991;25/2 Petrovka ul., Moscow, 107031

Russian Federation

V. A. Sergunova

V.A. Negovsky Research Institute of General Reanimatology

Email: orbf@mail.ru
ORCID iD: 0000-0002-8425-0845

Viktoria A. Sergunova – PhD (in Biol.), Leading Research Fellow, Chief of Laboratory of Biophysics of Cells Membranes in Critical States.

25/2 Petrovka ul., Moscow, 107031

Russian Federation

A. P. Kozlov

I.M. Sechenov First Moscow State Medical University

Email: fillnoise@mail.ru
ORCID iD: 0000-0003-3907-080X

Aleksandr P. Kozlov – PhD (in Phys. and Math.), Associate Professor, Chair of Medical and Biological Physics.

8/2 Trubetskaya ul., Moscow, 119991

Russian Federation

E. A. Sherstyukova

I.M. Sechenov First Moscow State Medical University; V.A. Negovsky Research Institute of General Reanimatology

Email: kmanchenko@yandex.ru
ORCID iD: 0000-0002-9962-6315

Ekaterina A. Sherstyukova – Assistant, Chair of Medical and Biological Physics  I.M. Sechenov FMSMU; Research Fellow, Laboratory of Biophysics of Cells Membranes in Critical States V.A. Negovsky RIGR.

8/2 Trubetskaya ul., Moscow, 119991; 25/2 Petrovka ul., Moscow, 107031

Russian Federation

O. E. Gudkova

V.A. Negovsky Research Institute of General Reanimatology

Email: olkagood@yandex.ru
ORCID iD: 0000-0001-9220-0138

Olga E. Gudkova – Senior Research Fellow, Laboratory of Biophysics of Cells Membranes in Critical States

25/2 Petrovka ul., Moscow, 107031, Russian Federation

Russian Federation

References

  1. Satran D, Henry CR, Adkinson C, Nicholson CI, Bracha Y, Henry TD. Cardiovascular manifestations of moderate to severe carbon monoxide poisoning. J Am Coll Cardiol. 2005;45(9):1513–6. doi: 10.1016/j.jacc.2005.01.044.
  2. Prabhakar NR, Peng YJ, Nanduri J. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res. 2018;7. pii: F1000 Faculty Rev-1900. doi: 10.12688/f1000research.16247.1.
  3. Boehning D, Moon C, Sharma S, Hurt KJ, Hester LD, Ronnett GV, Shugar D, Snyder SH. Carbon monoxide neurotransmission activated by CK2 phosphorylation of heme oxygenase-2. Neuron. 2003;40(1):129–37. doi: 10.1016/s0896- 6273(03)00596-8.
  4. Johnson RA, Johnson FK. Heme oxygenase-derived endogenous carbon monoxide impairs flow-induced dilation in resistance vessels. Shock. 2008;29(4):526–30. doi: 10.1097/ shk.0b013e31815076e3.
  5. Ahmed A, Rezai H, Broadway-Stringer S. Evidence-based revised view of the pathophysiology of preeclampsia. Adv Exp Med Biol. 2017;956:355–74. doi: 10.1007/5584_2016_168.
  6. Sears DA, Udden MM, Thomas LJ. Carboxyhemoglobin levels in patients with sickle-cell anemia: relationship to hemolytic and vasoocclusive severity. Am J Med Sci. 2001;322(6):345–8. doi: 10.1097/00000441-200112000-00007.
  7. Ehlers M, McCloskey D, Devejian NS. Alarming levels of carboxyhemoglobin in a unit of banked blood. Anesth Analg. 2003;97(1):289– 90. doi: 10.1213/01.ane.0000066261.57368.0c.
  8. Курсов СВ, Белецкий АВ, Лизогуб КИ, Лизогуб МВ. Мониторинг содержания в крови карбоксигемоглобина для оценки тяжести травматического шока и реперфузионных повреждений (аналитический обзор с результатами собственных наблюдений). Медицина неотложных состояний. 2017;(1):32–8. doi: 10.22141/2224-0586.1.80.2017.94449.
  9. Szeremeta M, Petelska AD, Kotyńska J, Niemcunowicz-Janica A, Figaszewski ZA. The effect of fatal carbon monoxide poisoning on the surface charge of blood cells. J Membr Biol. 2013;246(9):717–22. doi: 10.1007/s00232-013- 9591-2.
  10. Dileo PA, Tucciarone M, Castro ER, Guerrero M. Late stent thrombosis secondary to carbon monoxide poisoning. Cardiovasc Revasc Med. 2011;12(1):56–8. doi: 10.1016/j.carrev.2009.06.002.
  11. Tyunina OI, Artyukhov VG. Carbon monoxide (CO) modulates surface architectonics and energy metabolism of human blood erythrocytes. Bull Exp Biol Med. 2018;165(6):803–7. doi: 10.1007/s10517-018-4269-5.
  12. Díaz-Marrero AR, Rodríguez González MC, Hernández Creus A, Rodríguez Hernández A, Fernández JJ. Damages at the nanoscale on red blood cells promoted by fire corals. Sci Rep. 2019;9(1):14298. doi: 10.1038/s41598-019- 50744-6.
  13. Kozlova E, Chernysh A, Moroz V, Sergunova V, Gudkova O, Manchenko E. Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci Rep. 2017;7(1):7846. doi: 10.1038/s41598-017- 08255-9.
  14. Eichhorn L, Thudium M, Jüttner B. The Diagnosis and Treatment of Carbon Monoxide Poisoning. Dtsch Arztebl Int. 2018;115(51–2):863–70. doi: 10.3238/arztebl.2018.0863.
  15. Widdop B. Analysis of carbon monoxide. Ann Clin Biochem. 2002;39(Pt 4):378–91. doi: 10.1258/000456302760042146.
  16. Kozlova E, Chernysh A, Sergunova V, Gudkova O, Manchenko E, Kozlov A. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. J Mol Recognit. 2018;31(10):e2724. doi: 10.1002/jmr.2724.
  17. Черныш АМ, Козлова ЕК, Мороз ВВ, Сергунова ВА, Гудкова ОЕ, Манченко ЕА, Козлов АП. Влияние антиоксиданта на основе янтарной кислоты на превращение метгемоглобина в оксигемоглобин in vitro. Общая реаниматология. 2018;14(2):46–59. doi: 10.15360/1813- 9779-2018-2-46-59.
  18. Kozlova E, Chernysh A, Manchenko E, Sergunova V, Moroz V. Nonlinear biomechanical characteristics of deep deformation of native RBC membranes in normal state and under modifier action. Scanning. 2018;2018:1810585. doi: 10.1155/2018/1810585.
  19. Ruggeri FS, Marcott C, Dinarelli S, Longo G, Girasole M, Dietler G, Knowles TPJ. Identification of oxidative stress in red blood cells with nanoscale chemical resolution by infrared nanospectroscopy. Int J Mol Sci. 2018;19(9). pii: E2582. doi: 10.3390/ijms19092582.
  20. Yang CC, Ger J, Li CF. Formic acid: a rare but deadly source of carbon monoxide poisoning. Clin Toxicol (Phila). 2008;46(4):287–9. doi: 10.1080/15563650701378746.
  21. Carelli-Alinovi C, Dinarelli S, Sampaolese B, Misiti F, Girasole M. Morphological changes induced in erythrocyte by amyloid beta peptide and glucose depletion: A combined atomic force microscopy and biochemical study. Biochim Biophys Acta Biomembr. 2019;1861(1):236–44. doi: 10.1016/j.bbamem.2018.07.009.
  22. Kozlova E, Chernysh A, Moroz V, Gudkova O, Sergunova V, Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci Rep. 2014;4:6033. doi: 10.1038/ srep06033.
  23. Clarke GM, Higgins TN. Laboratory investigation of hemoglobinopathies and thalassemias: review and update. Clin Chem. 2000;46(8 Pt 2): 1284–90.
  24. Baskurt OK, Meiselman HJ. RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease. Microcirculation. 2008;15(7): 585–90. doi: 10.1080/10739680802107447.
  25. Лысенко ВИ, Голянищев МА. Диагностика и неотложная помощь при отравлении моноксидом углерода. Медицина неотложных состояний. 2016;(5):18–24. doi: 10.22141/2224- 0586.5.76.2016.76429.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2019 Kozlova E.K., Sergunova V.A., Kozlov A.P., Sherstyukova E.A., Gudkova O.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies