Prognostic value of lung ultrasonography after on-pump cardiac surgery

Cover Page


Cite item

Full Text

Abstract

Rationale: Along with bedside plain chest radiography, lung ultrasonography is being increasingly used for detection of postoperative respiratory complications.
Aim: Our study was aimed at the evaluation of lung ultrasonography efficacy for the diagnosis of postoperative respiratory complications in patients after the on-pump cardiac surgery.
Materials and methods: The study included 39 patients who had undergone elective cardiac on-pump surgery. Assessment of hemodynamic parameters and blood gases was done at admittance to the intensive care unit (ICU), as well as at 6 and 24 hours after surgery. Lung ultrasonography was also performed including counting of B-lines in 12 lung quadrants at 6 and 24 hours after surgery, as well as chest radiography at 24 hours. Duration of mechanical ventilation, time in ICU and in-hospital stay were also evaluated.
Results: Gas exchange deterioration was associated with increased numbers of B-lines: 9 (5 to 15) at 24 hours after surgery. In the patients with PaO2/FiO2 above 300 mm Hg the number of B-lines at 24 hours after surgery was 4 (2 to 8) (р = 0.04). Plain chest radiography at 24 hours after surgery revealed abnormalities in 69% of the patients. Discoid atelectases were the most common findings (n = 13). The ROC analysis showed that increased numbers of B-lines above 10 at 6 hours after completion of the surgery was predictive of the development of X-ray abnormalities at 24 hours (AUC 0.82, р = 0.02, sensitivity 86%, specificity 76%). At 6 hours after the intervention the patients who subsequently required prolonged mechanical ventilation had increased numbers of B-lines (15 [14–27]) compared to those who could be extubated within the first 24 hours after surgery (10 [3–13], p = 0.02).
Conclusion: Lung ultrasonography monitoring accelerates the diagnosis of respiratory problems after cardiac surgery and allows timely identification of the patients requiring prolonged respiratory support and ICU stay.

About the authors

E. V. Fot

Northern State Medical University

Author for correspondence.
Email: ev_fot@mail.ru
ORCID iD: 0000-0003-0052-8086

Evgenia V. Fot - MD, PhD, Associate Professor, Department of Anesthesiology and Intensive Care Therapy.

51 Troitsky prospect, Arkhangelsk, 163000, Tel.: +7 (921) 295 06 85

Russian Federation

N. N. Izotova

Northern State Medical University

Email: fake@neicon.ru

Natalia N. Izotova - MD, Postgraduate Student, Department of Anesthesiology and Intensive Care Therapy.

51 Troitsky prospect, Arkhangelsk, 163000

Russian Federation

M. V. Vinogradov

Northern State Medical University

Email: fake@neicon.ru

Mikhail V. Vinogradov - MD, Resident, Department of Anesthesiology and Intensive Care Therapy.

51 Troitsky prospect, Arkhangelsk, 163000

Russian Federation

V. V. Kuzkov

Northern State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-8191-1185

Vsevolod V. Kuzkov - MD, PhD, Professor, Department of Anesthesiology and Intensive Care Therapy.

51 Troitsky prospect, Arkhangelsk, 163000

Russian Federation

M. Y. Kirov

Northern State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-4375-3374

Mikhail Y. Kirov - MD, PhD, Professor, Head of Department of Anesthesiology and Intensive Care Therapy.

51 Troitsky prospect, Arkhangelsk, 163000

Russian Federation

References

  1. Weissman C. Pulmonary complications after cardiac surgery. Semin Cardiothorac Vasc Anesth. 2004;8(3):185–211. doi: 10.1177/108925320400800303.
  2. Rubinowitz AN, Siegel MD, Tocino I. Thoracic imaging in the ICU. Crit Care Clin. 2007;23(3): 539–73. doi: 10.1016/j.ccc.2007.06.001.
  3. Jain U, Rao TL, Kumar P, Kleinman BS, Belusko RJ, Kanuri DP, Blakeman BM, Bakhos M, Wallis DE. Radiographic pulmonary abnormalities after different types of cardiac surgery. J Cardiothorac Vasc Anesth. 1991;5(6):592–5. doi: 10.1016/1053-0770(91)90013-j.
  4. Ball L, Costantino F, Pelosi P. Postoperative complications of patients undergoing cardiac surgery. Curr Opin Crit Care. 2016;22(4):386–92. doi: 10.1097/MCC.0000000000000319.
  5. Chiumello D, Chevallard G, Gregoretti C. Non-invasive ventilation in postoperative patients: a systematic review. Intensive Care Med. 2011;37(6):918–29. doi: 10.1007/s00134-011-2210-8.
  6. Kuzkov VV, Rodionova LN, Ilyina YY, Ushakov AA, Sokolova MM, Fot EV, Duberman BL, Kirov MY. Protective ventilation improves gas exchange, reduces incidence of atelectases, and affects metabolic response in major pancreatoduodenal surgery. Front Med (Lausanne). 2016;3:66. doi: 10.3389/fmed.2016.00066.
  7. Magnusson L, Spahn DR. New concepts of atelectasis during general anaesthesia. Br J Anaesth. 2003;91(1):61–72. doi: 10.1093/bja/aeg085.
  8. Pieczkoski SM, Margarites AGF, Sbruzzi G. Noninvasive ventilation during immediate postoperative period in cardiac surgery patients: systematic review and meta-analysis. Braz J Cardiovasc Surg. 2017;32(4):301–11. doi: 10.21470/1678-9741-2017-0032.
  9. Al Deeb M, Barbic S, Featherstone R, Dankoff J, Barbic D. Point-of-care ultrasonography for the diagnosis of acute cardiogenic pulmonary edema in patients presenting with acute dyspnea: a systematic review and meta-analysis. Acad Emerg Med. 2014;21(8):843–52. doi: 10.1111/acem.12435.
  10. Wooten WM, Shaffer LET, Hamilton LA. Bedside Ultrasound Versus Chest Radiography for Detection of Pulmonary Edema: A Prospective Cohort Study. J Ultrasound Med. 2019;38(4): 967–73. doi: 10.1002/jum.14781.
  11. Martindale JL, Noble VE, Liteplo A. Diagnosing pulmonary edema: lung ultrasound versus chest radiography. Eur J Emerg Med. 2013;20(5):356–60. doi: 10.1097/MEJ.0b013e32835c2b88.
  12. Touw HR, Parlevliet KL, Beerepoot M, Schober P, Vonk A, Twisk JW, Elbers PW, Boer C, Tuinman PR. Lung ultrasound compared with chest X-ray in diagnosing postoperative pulmonary complications following cardiothoracic surgery: a prospective observational study. Anaesthesia. 2018;73(8):946–54. doi: 10.1111/anae.14243.
  13. Gutierrez M, Salaffi F, Carotti M, Tardella M, Pineda C, Bertolazzi C, Bichisecchi E, Filippucci E, Grassi W. Utility of a simplified ultrasound assessment to assess interstitial pulmonary fibrosis in connective tissue disorders – preliminary results. Arthritis Res Ther. 2011;13(4):R134. doi: 10.1186/ar3446.
  14. Tardella M, Di Carlo M, Carotti M, Filippucci E, Grassi W, Salaffi F. Ultrasound B-lines in the evaluation of interstitial lung disease in patients with systemic sclerosis: Cut-off point definition for the presence of significant pulmonary fibrosis. Medicine (Baltimore). 2018;97(18):e0566. doi: 10.1097/MD.0000000000010566.
  15. Lichtenstein DA. Lung ultrasound in the critically ill. Ann Intensive Care. 2014;4:1. doi: 10.1186/2110-5820-4-1.
  16. Лахин РЕ, Щеголев АВ, Жирнова ЕА, Емельянов АА, Грачев ИН. Характеристика ультразвуковых признаков в диагностике объема и характера поражения легких. Вестник интенсивной терапии. 2016;(4):5–11.
  17. Lichtenstein DA, Lascols N, Prin S, Mezière G. The "lung pulse": an early ultrasound sign of complete atelectasis. Intensive Care Med. 2003;29(12):2187–92. doi: 10.1007/s00134-003-1930-9.
  18. Ленькин ПИ, Смёткин АА, Хусейн АФ, Ленькин АИ, Паромов КВ, Ушаков АА, Крыгина МА, Киров МЮ. Непрерывный мониторинг лактата и глюкозы при комплексной хирургической коррекции приобретенных комбинированных пороков сердца и ишемической болезни сердца. Вестник анестезиологии и реаниматологии. 2015;12(6): 4–15. doi: 10.21292/2078-5658-2015-12-6-4-15.
  19. Monastesse A, Girard F, Massicotte N, Chartrand-Lefebvre C, Girard M. Lung ultrasonography for the assessment of perioperative atelectasis: a pilot feasibility study. Anesth Analg. 2017;124(2):494–504. doi: 10.1213/ANE.0000000000001603.
  20. Ciumanghel A, Siriopol I, Blaj M, Siriopol D, Gavrilovici C, Covic A. B-lines score on lung ultrasound as a direct measure of respiratory dysfunction in ICU patients with acute kidney injury. Int Urol Nephrol. 2018;50(1):113–9. doi: 10.1007/s11255-017-1730-8.
  21. Lichtenstein D. FALLS-protocol: lung ultrasound in hemodynamic assessment of shock. Heart Lung Vessel. 2013;5(3):142–7.
  22. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–63. doi: 10.1016/j.echo.2005.05.019.
  23. Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J. 2016;37(27):2097–104. doi: 10.1093/eurheartj/ehw164.
  24. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water. Am J Cardiol. 2004;93(10):1265–70. doi: 10.1016/j.amjcard.2004.02.012.
  25. Hasan AA, Makhlouf HA. B-lines: Transthoracic chest ultrasound signs useful in assessment of interstitial lung diseases. Ann Thorac Med. 2014;9(2):99–103. doi: 10.4103/1817-1737.128856.
  26. Bataille B, Rao G, Cocquet P, Mora M, Masson B, Ginot J, Silva S, Moussot PE. Accuracy of ultrasound B-lines score and E/Ea ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome. J Clin Monit Comput. 2015;29(1):169–76. doi: 10.1007/s10877-014-9582-6.
  27. Wang G, Ji X, Xu Y, Xiang X. Lung ultrasound: a promising tool to monitor ventilator-associated pneumonia in critically ill patients. Crit Care. 2016;20(1):320. doi: 10.1186/s13054-016-1487-y.
  28. Le Neindre A, Mongodi S, Philippart F, Bouhemad B. Thoracic ultrasound: Potential new tool for physiotherapists in respiratory management. A narrative review. J Crit Care. 2016;31(1):101–9. doi: 10.1016/j.jcrc.2015.10.014.
  29. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, Dean A, Tsung JW, Soldati G, Copetti R, Bouhemad B, Reissig A, Agricola E, Rouby JJ, Arbelot C, Liteplo A, Sargsyan A, Silva F, Hoppmann R, Breitkreutz R, Seibel A, Neri L, Storti E, Petrovic T; International Liaison Committee on Lung Ultrasound (ILCLUS) for International Consensus Conference on Lung Ultrasound (ICC-LUS). International evidence-based recommendations for pointof-care lung ultrasound. Intensive Care Med. 2012;38(4):577–91. doi: 10.1007/s00134-012-2513-4.
  30. Ashton-Cleary DT. Is thoracic ultrasound a viable alternative to conventional imaging in the critical care setting? Br J Anaesth. 2013;111(2): 152–60. doi: 10.1093/bja/aet076.
  31. Lichtenstein D, Goldstein I, Mourgeon E, Cluzel P, Grenier P, Rouby JJ. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15. doi: 10.1097/00000542-200401000-00006.
  32. Oropello J, Rahmanian M. Can chest sonography predict and facilitate successful ventilator weaning? Crit Care Med. 2013;41(8):2065–7. doi: 10.1097/CCM.0b013e3182963e91.
  33. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–50. doi: 10.1056/NEJM199105233242101.
  34. Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A. Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med. 2016;42(7):1107–17. doi: 10.1007/s00134-016-4245-3.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Fot E.V., Izotova N.N., Vinogradov M.V., Kuzkov V.V., Kirov M.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies