THE BIOANTIOXIDANTS (PART 2)

Cover Page


Cite item

Abstract

Based on the analysis of the latest scientific data, the paper suggests a synthetic classification of the known bioantioxidants, peculiarities of their structure and functioning. The second part of the review describes the sulfur-containing compounds, chelators
of the metal ions of variable valency, compounds containing hydroxyl or amino group, and nanoparticles.

About the authors

S. V. Gudkov

Institute of Theoretical and Experimental Biophysics of RAS
Pushchino State Scientific Institute
A.M. Prokhorov General Physics Institute of RAS

Author for correspondence.
Email: s_makariy@rambler.ru
PhD, leading scientific worker, Laboratory of Isotopic Investigation, ITEB of RAS Russian Federation

V. I. Bruskov

Institute of Theoretical and Experimental Biophysics of RAS
Pushchino State Scientific Institute

Email: fake@neicon.ru
PhD, Professor, Head of the Laboratory of Isotopic Investigations, ITEB of RAS Russian Federation

A. V. Kulikov

Institute of Theoretical and Experimental Biophysics of RAS

Email: fake@neicon.ru

PhD, Scientific Secretary, ITEB of RAS

Russian Federation

M. G. Sharapov

Pushchino State Scientific Institute
Institute of Cell Biophysics of RAS

Email: fake@neicon.ru
PhD, senior scientific worker, Laboratory of the Reception Mechanisms, ICB of RAS Russian Federation

D. A. Kulikov

Institute of Theoretical and Experimental Biophysics of RAS
Moscow Regional Research and Clinical Institute

Email: fake@neicon.ru
PhD, senior scientific worker, Laboratory of Medico-Physical Investigations, MONIKI Russian Federation

A. V. Molochkov

Moscow Regional Research and Clinical Institute

Email: fake@neicon.ru
MD, PhD, Professor, Deputy Director on science, educational work and international relations, MONIKI Russian Federation

References

  1. Меньщикова Е.Б., Ланкин В.З., Зенков Н.К., Бондарь И.А., Круговых Н.Ф., Труфакин В.А. Окислительный стресс. Прооксиданты и антиоксиданты. M.: Слово; 2006. [Men'shchikova E.B., Lankin V.Z., Zenkov N.K., Bondar’ I.A., Krugovykh N.F., Trufakin V.A. Oxidative stress. Pro-oxidants and antioxidants. Moscow: Slovo; 2006 (in Russian)].
  2. Колесниченко Л.С., Кулинский В.И. Глутатионтрансферазы. Успехи современной биологии 1989;107(2):179-94. [Kolesnichenko L.S., Kulinskiy V.I. Glutathionoxidase. Uspekhi sovremennoy biologii 1989;107(2):179-94 (in Russian)].
  3. Гудков С.В. Механизмы образования активных форм кислорода под влиянием физических факторов и их генотоксическое действие [диссертация]. Пущино: ИТЭБ РАН; 2012. [Gudkov S.V. The mechanisms of the reactive oxygen species production under the influence of physical factors and their genotoxic acti vity [dissertation]. Pushchino: ITEB RAS; 2012 (in Russian)].
  4. Гудков С.В., Брусков В.И. Гуанозин и инозин (рибоксин). Антиоксидантные и радиозащитные свойства. Saarbrücken: Lambert Academic Publishing; 2011. [Gudkov S.V., Bruskov V.I. Guanosine and inosine (riboxin). Antioxidant and radioprotective properties. Saarbrücken: Lambert Academic Publishing; 2011 (in Russian)].
  5. Collet J.F., Messens J. Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 2010;13(8):1205-16.
  6. Seo M.S., Kang S.W., Kim K., Baines I.C., Lee T.H., Rhee S.G. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J Biol Chem 2000;275(27):20346-54.
  7. Wood Z.A., Poole L.B., Karplus P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 2003; 300(5619):650-3.
  8. Hanschmann E.M., Godoy J.R., Berndt C., Hudemann C., Lillig C.H. Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013;19(13):1539-605.
  9. Sharma S., Rais A., Sandhu R., Nel W., Ebadi M. Clinical significance of metallothioneins in cell therapy and nanomedicine. Int J Nanomedicine 2013;8:1477-88.
  10. Sokolov A.V., Kostevich V.A., Runova O.L., Gorudko I.V., Vasilyev V.B., Cherenkevich S.N., Panasenko O.M. Proatherogenic modification of LDL by surface-bound myeloperoxidase. Chem Phys Lipids 2014;180:72-80.
  11. Sokolov A.V., Solovyov K.V., Kostevich V.A., Chekanov A.V., Pulina M.O., Zakharova E.T., Shavlovski M.M., Panasenko O.M., Vasilyev V.B. Protection of ceruloplasmin by lactoferrin against hydroxyl radicals is pH dependent. Biochem Cell Biol 2012;90(3): 397-404.
  12. Giurgea N., Constantinescu M.I., Stanciu R., Suciu S., Muresan A. Ceruloplasmin – acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 2005;11(2):RA48-51.
  13. Болдырев А.А. Карнозин. Биологическое значение и возможности применения в медицине. М.: Издательство МГУ; 1998 [Boldyrev A.A. Carnosin. Biological significance and possibilities of medical application. Moscow: Izdatel’stvo MGU; 1998 (in Russian)].
  14. Гудков С.В., Штаркман И.Н., Смирнова В.С., Черников А.В., Брусков В.И. Гуанозин и инозин как природные антиоксиданты и радиопротекторы для мышей при действии летальных доз γ-облучения. Доклады Академии наук 2006;407(1):115-8. [Gudkov S.V., Shtarkman I.N., Smirnova V.S., Chernikov A.V., Bruskov V.I. Guanosine and inosine as natural antioxidants and radioprotectors for mice under lethal doses of γ-radiation. Doklady Akademii nauk 2006;407(1):115-8 (in Russian)].
  15. Gudkov S.V., Shtarkman I.N., Smirnova V.S., Chernikov A.V., Bruskov V.I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat Res 2006;165(5):538-45.
  16. Гудков С.В., Гудкова О.Ю., Штаркман И.Н., Гапеев А.Б. Гуанозин и инозин как природные генопротекторы для клеток крови мышей при воздействии рентгеновского излучения. Радиационная биология. Радиоэкология 2006;46(6):713-8. [Gudkov S.V., Gudkova O.Yu., Shtarkman I.N., Gapeev A.B. Guanosine and inosine as natural genoprotectors for mice blood cells under X-ray radiation. Radiatsionnaya biologiya. Radioekologiya 2006;46(6):713-8 (in Russian)].
  17. Асадуллина Н.Р., Гудков С.В., Брусков В.И. Антиоксидантные свойства ксантозина при воздействии рентгеновского излучения. Фундаментальные исследования 2011;(10):22-5. [Asadullina N.R., Gudkov S.V., Bruskov V.I. Antioxidant properties of Xantosine under X-ray radiation. Fundamentalnye issledovaniya 2011;(10):22-5 (in Russian)].
  18. Asadullina N.R., Usacheva A.M., Gudkov S.V. Protection of mice against X-ray injuries by the post-irradiation administration of inosine-5’-monophosphate. J Radiat Res 2012;53(2):211-6.
  19. Попова Н.Р., Гудков С.В., Брусков В.И. Природные пуриновые соединения как радиозащитные средства. Радиационная биология. Радиоэкология 2014;54(1):38-49. [Popova N.R., Gudkov S.V., Bruskov V.I. Natural purine compounds as radioprotective agents. Radiatsionnaya biologiya. Radio-ekologiya 2014;54(1):38-49 (in Russian)].
  20. Tan D.-X., Chen L.D., Poeggeler B., Manchester L.C., Reiter R.J. Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1993;1:57-60.
  21. Salucci S., Burattini S., Battistelli M., Baldassarri V., Curzi D., Valmori A., Falcieri E. Melatonin prevents chemical-induced haemopoietic cell death. Int J Mol Sci 2014;15(4):6625-40.
  22. Jucker W. Carotenoids. Chimia (Aarau) 2011;65(1-2):109-10.
  23. Bolhassani A., Khavari A., Bathaie S.Z. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim Biophys Acta 2014;1845(1):20-30.
  24. Halliwell B., Gutteridge J.M. The antioxidants of human extracellular fluids. Arch Biochem Biophys 1990;280(1):1-8.
  25. Chambial S., Dwivedi S., Shukla K.K., John P.J., Sharma P. Vitamin C in disease prevention and cure: An overview. Indian J Clin Biochem 2013;28(4):314-28.
  26. Padayatty S.J., Katz A., Wang Y., Eck P., Kwon O., Lee J.H., Chen S., Corpe C., Dutta A., Dutta S.K., Levine M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 2003;22(1):18-35.
  27. Пиотровский Л.Б., Киселев О.И. Фуллерены в биологии. СПб.: Росток; 2006. [Piotrovskiy L.B., Kiselev O.I. Fullerenes in Biology. Saint Petersburg: Rostok; 2006 (in Russian)].
  28. Krusic P.J., Wasserman E., Keizer P.N., Morton J.R., Preston K.F. Radical reactions of c60. Science 1991;254(5035):1183-5.
  29. Andrievsky G.V., Bruskov V.I., Tykhomyrov A.A., Gudkov S.V. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostructures in vitro and in vivo. Free Radic Biol Med 2009;47(6):786-93.
  30. Bensasson R.V., Brettreich M., Frederiksen J., Göttinger H., Hirsch A., Land E.J., Leach S., McGarvey D.J., Schönberger H. Reactions of e(-)(aq), CO(2)(*)(-), HO(*), O(2)(*)(-) and O(2)((1) delta(g)) with a dendro[60]fullerene and C(60)[C(COOH)(2)](n) (n = 2-6). Free Radic Biol Med 2000;29(1):26-33.
  31. Wolff D.J., Barbieri C.M., Richardson C.F., Schuster D.I., Wilson S.R. Trisamine C(60)-fullerene adducts inhibit neuronal nitric oxide synthase by acting as highly potent calmodulin antagonists. Arch Biochem Biophys 2002;399(2):130-41.
  32. Engel P.S., Billups W.E., Abmayr D.W. Jr., Tsvaygboym K., Wang R. Reaction of single-walled carbon nanotubes with organic peroxides. J Phys Chem C 2008;112(3):695-700.
  33. Lucente-Schultz R.M., Moore V.C., Leonard A.D., Price B.K., Kosynkin D.V., Lu M., Partha R., Conyers J.L., Tour J.M. Antioxidant single-walled carbon nanotubes. J Am Chem Soc 2009; 131(11):3934-41.
  34. Fenoglio I., Tomatis M., Lison D., Muller J., Fonseca A., Nagy J.B., Fubini B. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med 2006;40(7):1227-33.
  35. Cirillo G., Hampel S., Klingeler R., Puoci F., Iemma F., Curcio M., Parisi O.I., Spizzirri U.G., Picci N., Leonhardt A., Ritschel M., Büchner B. Antioxidant multi-walled carbon nanotubes by free radical grafting of gallic acid: new materials for biomedical applications. J Pharm Pharmacol 2011;63(2):179-88.
  36. Galano A. Carbon nanotubes: promising agents against free radicals. Nanoscale 2010;2(3):373-80.
  37. Hsieh S.F., Bello D., Schmidt D.F., Pal A.K., Rogers E.J. Biological oxidative damage by carbon nanotubes: fingerprint or footprint? Nanotoxicology 2012;6(1):61-76.

Copyright (c) 2014 Gudkov S.V., Bruskov V.I., Kulikov A.V., Sharapov M.G., Kulikov D.A., Molochkov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies