Effect of photodynamic therapy with the bacteriochlorophyll a derivative on growth and functional morphology of rat sarcoma M-1

Cover Page


Cite item

Full Text

Abstract

Background: In recent years, the method of photodynamic therapy (PDT) has been increasingly used in clinical oncology. Three non-toxic components play a key role in realization of the anti- tumor effect of PDT: a photosensitizer (PS), local irradiation of the tumor with light/laser of a certain wavelength corresponding to the sensitizer absorption peak, and oxygen. The highly reactive biological oxidants formed during photochemical reactions exert a destructive effect on cells and tumor vasculature with subsequent activation of the immune response. Efficiency of PDT is determined by the level of PS accumulation in tumors, as well as by its photophysical parameters and photochemical activity. To create a new PS, natural chlorophylls and their derivatives with intense absorption in the long-wave region of the spectrum are of particular interest.

Aim: To study the efficacy and mechanism of PDT action (using a conjugate containing two molecules of dipropoxy-bacteriopurpurinimide with a cystamine residue as a PS) on the growth and functional morphology of transplanted solid connective tissue tumor.

Materials and methods: The study was carried out in female white outbred rats with subcutaneously implanted sarcoma M-1. PS was injected to rats of the experimental group intraperitoneally. PDT was performed during the maximal index of tumor/ healthy tissue contrast after the administration of the PS. The criterion of PDT efficacy was a change in the tumor growth/regression coefficient. The research methods included immunohistochemistry for PCNA and CD31, evaluation of mitotic activity and apoptosis of tumor cells, as well as computer analysis of microscopic images.

Results: After PDT with the new PS, a 16-fold decrease of growth coefficient of tumor nodes was registered. The photo-induced antitumor effect was shown to be due to destruction of sarcoma M-1 vascular bed, rapid inhibition of proliferative activity and devitalization of tumor cells. At early stages after PDT, destruction of the microvasculature and photo-cytostatic shock of tumor cells with subsequent development of necrosis appears to be caused by direct influence of the light flux on sensitized cellular elements in tumor parenchyma and stroma. 

Conclusion: The final result of PDT is determined by the sequence of destructive and inflammatory changes in the tumor parenchyma and surrounding tissues, as well as by a proliferative potential of malignant cells surviving after treatment. The surviving tumor cells, which determine the recurrent growth of neoplasms after PDT, are still present, maybe due to an insufficient concentration of the sensitizer in certain weakly vascularized areas of sarcoma M-1.

About the authors

V. V. Yuzhakov

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Author for correspondence.
Email: yuzh_vad@mail.ru

MD, PhD, Head of Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation. Tel.: +7 (903) 635 79 71

Россия

Yu. S. Romanko

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

MD, PhD, Professor, Head of Scientific and Organizational Department

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

M. A. Kaplan

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

MD, PhD, Professor, Head of Department of Photodynamic Diagnosis and Therapy

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

V. N. Galkin

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

MD, PhD, Professor, Director

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

A. G. Majouga

Lomonosov Moscow State University

Email: fake@neicon.ru

PhD (in Chemistry), Professor, Chair of Organic Chemistry, Faculty of Chemistry

1 Leninskie Gory, Moscow, 119991, Russian Federation

Россия

M. A. Grin

Moscow Technological University

Email: fake@neicon.ru

PhD (in Chemistry), Professor, Chair of Chemistry and Technology of Biologically Active Substances Produced by Fine Organic Synthesis

86 Vernadskogo prospekt, Moscow, 119571, Russian Federation

Россия

N. V. Burmistrova

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

PhD (in Biology), Senior Researcher, Head of Laboratory of Experimental Photodynamic Therapy

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

N. K. Fomina

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

PhD (in Biology), Senior Researcher, Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

L. N. Bandurko

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

MD, PhD, Leading Researcher, Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

L. E. Sevankaeva

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Senior Researcher, Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

N. D. Yakovleva

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

PhD (in Biology), Leading Researcher, Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

I. E. Ingel

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

PhD (in Biology), Senior Researcher, Laboratory of Radiation Pathomorphology

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

S. A. Mozerov

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

MD, PhD, Head of Clinico-Morphological Department

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

A. V. Starovoytova

A. Tsyb Medical Radiological Research Centre –
branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation

Email: fake@neicon.ru

Research Assistant, Laboratory of Experimental Photodynamic Therapy

4 Koroleva ul., Obninsk, Kaluzhskaya oblast', 249036, Russian Federation

Россия

References

  1. Каплан МА, Капинус ВН, Попучиев ВВ, Романко ЮС, Ярославцева-Исаева ЕВ, Спиченкова ИС, Шубина АМ, Боргуль ОВ, Горанская ЕВ. Фотодинамическая терапия: результаты и перспективы. Радиация и риск. 2013;22(3): 115–23.
  2. Филоненко ЕВ, Серова ЛГ. Фотодинамическая терапия в клинической практике. Biomedical Photonics. 2016;5(2): 26–37.
  3. Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ. Photodynamic therapy in oncology. Expert Opin Pharmacother. 2001;2(6): 917–27. doi: 10.1517/14656566.2.6.917.
  4. Каплан МА, Романко ЮС, Попучиев ВВ, Южаков ВВ, Бандурко ЛН, Фомина НК, Михина ЛН, Малыгина АИ, Ингель ИЭ. Действие фотодинамической терапии с Фотодитазином на рост и функциональную морфологию саркомы М-1. Лазерная медицина. 2005;9(4): 41–7.
  5. Pervaiz S. Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J. 2001;15(3): 612–7. doi: 10.1096/fj.00-0555rev.
  6. Kessel D, Dougherty TJ. Agents used in photodynamic therapy. Reviews in Contemporary Pharmacotherapy. 1999;10(1): 19–24.
  7. Grin MC, Mironov AF, Shtil AC. Bacteriochlorophyll a, and its derivatives: chemistry and perspectives for cancer therapy. Anticancer Agents Med Chem. 2008;8(6): 683–97. doi: 10.2174/187152008785133128.
  8. Пантюшенко ИВ, Грин МА, Якубовская РИ, Плотникова ЕА, Морозова НБ, Цыганков АА, Миронов АФ. Новый высокоэффективный ИК-фотосенсибилизатор для фотодинамической терапии рака. Тонкие химические технологии. 2014;9(3): 3–10.
  9. Южаков ВВ, Бурмистрова НВ, Фомина НК, Бандурко ЛН, Севанькаева ЛЕ, Старовойтова АВ, Яковлева НД, Цыганова МГ, Ингель ИЭ, Островерхов ПВ, Каплан МА, Грин МА, Мажуга АГ, Миронов АФ, Галкин ВН, Романко ЮС. Морфофункциональные характеристики саркомы М-1 крыс после фотодинамической терапии с производным бактериохлорофилла а. Biomedical Photonics. 2016;5(4): 4–14.
  10. Южаков ВВ, Хавинсон ВХ, Кветной ИМ, Фомина НК, Кузнецова МН. Кинетика роста и функциональная морфология саркомы М-1 у интактных крыс и после гамма-облучения. Вопросы онкологии. 2001;47(3): 328– 34.
  11. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis – correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1): 1–8. doi: 10.1056/NEJM199101033240101.
  12. Al-Najar A, Al-Sanabani S, Korda JB, Hegele A, Bolenz C, Herbst H, Jönemann KP, Naumann CM. Microvessel density as a prognostic factor in penile squamous cell carcinoma. Urol Oncol. 2012;30(3): 325–9. doi: 10.1016/j.urolonc.2010.03.016.
  13. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12): 889–905.
  14. Rak JW, St Croix BD, Kerbel RS. Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anticancer Drugs. 1995;6(1): 3–18.
  15. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 2011;91(3): 1071–121. doi: 10.1152/physrev.00038.2010.
  16. Plate KH, Scholz A, Dumont DJ. Tumor angiogenesis and anti-angiogenic therapy in malignant gliomas revisited. Acta Neuropathol. 2012;124(6): 763–75. doi: 10.1007/s00401- 012-1066-5.
  17. Ferrario A, von Tiehl KF, Rucker N, Schwarz MA, Gill PS, Gomer CJ. Antiangiogenic treatment enhances photodynamic therapy responsiveness in a mouse mammary carcinoma. Cancer Res. 2000;60(15): 4066–9.
  18. Gomer CJ, Ferrario A, Luna M, Rucker N, Wong S. Photodynamic therapy: combined modality approaches targeting the tumor microenvironment. Lasers Surg Med. 2006;38(5): 516–21. doi: 10.1002/lsm.20339.
  19. Каплан МА, Романко ЮС, Попучиев ВВ, Южаков ВВ, Бандурко ЛН, Михина ЛН, Фомина НК, Малыгина АИ, Ингель ИЭ. Влияние плотности световой энергии на противоопухолевую эффективность фотодинамической терапии с Фотодитазином. Лазерная медицина. 2005;9(2): 46–54.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Yuzhakov V.V., Romanko Y.S., Kaplan M.A., Galkin V.N., Majouga A.G., Grin M.A., Burmistrova N.V., Fomina N.K., Bandurko L.N., Sevankaeva L.E., Yakovleva N.D., Ingel I.E., Mozerov S.A., Starovoytova A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies