The role of ultrastructural abnormalities of the blood-brain barrier in the development of brain glioblastoma radioresistance

Cover Page

Cite item


Background: Glioblastoma (GB) is the most commonly diagnosed brain tumor. Its management involves adjuvant therapies, such as radiation. The cause of high probability of GB local relapse is its radioresistance related to hypoxia arising from abnormal blood-brain barrier permeability in GB vessels and in the peritumoral zone (PZ).

Aim: To study pathophysiology of hypoxia in the residual GB based on the abnormalities of the morphological elements of the capillary walls building up the blood-brain barrier in GB and PZ capillaries.

Materials and methods: Samples for morphological evaluation were taken during surgery for GB in 5 patients. The samples were prepared for transmission electron microscopy according to the standard technique with fixation in 2% glutaraldehyde in phosphate buffer, post-fixation with osmium tetroxide, embedding in the epon-araldite mixture, and contrast staining of ultrathin sections with uranylacetate and lead citrate. Abnormalities of the capillary cells (mitochondrial vacuolization and vacuolization of endoplasmic reticulum in endothelial cells, pericytes and astrocytes), as well as of the acellular element of the capillary wall, i.e. basement membrane, were assessed in two groups of capillaries – those of GB (n = 38) and those of PZ (n = 32).

Results: Abnormalities characteristic for apoptosis and oncosis were found in the cells of the GB and PZ capillaries of the blood-brain barrier, such as endothelial cells and pericytes. However, in the GB capillaries these abnormalities were signifcantly more frequent (р < 0.001). Only half (52.6%) of the GB capillaries had an edematous pericapillary astrocyte layer. In all other capillaries, astrocyte sprouts either were visualized as separate morphological elements (13.2%) or were not visualized at all (34.2%). All PZ capillaries had the astrocyte layer, being edematous in 68.8% of the capillaries and totally edematous only in 25%. Thickened basement membrane was found in the vast majority (89.5%) of the GB capillaries and only in 25% of the PZ capillaries (р < 0.001).

Conclusion: Findings of abnormal cell elements in the GB capillaries leading to peritumoral edema and consequent hypoxia are highly likely to be the cause of the remnant GB radioresistance.

About the authors

A. S. Balkanov

Moscow Regional Research and Clinical Institute (MONIKI)

Author for correspondence.

Andrey S. Balkanov – MD, PhD, Head of Department of Radiology

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

V. P. Chernikov

Research Institute of Human Morphology


Valeriy P. Chernikov – MD, PhD, Head of Laboratory of Cell Pathology

3 Tsyurupy ul., Moscow, 117418

Russian Federation

A. V. Golanov

N.N. Burdenko Neurosurgery Research Institute


Andrey V. Golanov – Member-Correspondent of Russian Academy of Sciences, MD, PhD, Professor, Head of Department of Radiology and Radiosurgery

4-ya Tverskaya-Yamskaya ul., Moscow, 125047

Russian Federation


  1. Балканов АС, Савкова РФ, Дударова РГ, Петрушкина НН, Качков ИА, Ананьева ИИ. Некоторые показатели заболеваемости опухолями ЦНС жителей Московской области с 1998 по 2003 г. Нейрохирургия. 2007;(3): 83–6.
  2. Jiang H, Cui Y, Wang J, Lin S. Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classifcation of tumors of the central nervous system. Oncotarget. 2017;8(12):20354–61. doi: 10.18632/oncotarget.13555.
  3. Kuhnt D, Becker A, Ganslandt O, Bauer M, Buchfelder M, Nimsky C. Correlation of the extent of tumor volume resection and patient survival in surgery of glioblastoma multiforme with high-feld intraoperative MRI guidance. Neuro Oncol. 2011;13(12):1339–48. doi: 10.1093/neuonc/nor133.
  4. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW. Mechanisms regulating glioma invasion. Cancer Lett. 2015;362(1):1–7. doi: 10.1016/j.canlet.2015.03.015.
  5. Ruiz-Ontañon P, Orgaz JL, Aldaz B, Elosegui-Artola A, Martino J, Berciano MT, Montero JA, Grande L, Nogueira L, Diaz-Moralli S, Esparís-Ogando A, Vazquez-Barquero A, Lafarga M, Pandiella A, Cascante M, Segura V, Martinez-Climent JA, Sanz-Moreno V, Fernandez-Luna JL. Cellular plasticity confers migratory and invasive advantages to a population of glioblastoma-initiating cells that infltrate peritumoral tissue. Stem Cells. 2013;31(6): 1075–85. doi: 10.1002/stem.1349.
  6. Lemée JM, Clavreul A, Menei P. Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone. Neuro Oncol. 2015;17(10):1322–32. doi: 10.1093/neuonc/nov119.
  7. McGee MC, Hamner JB, Williams RF, Rosati SF, Sims TL, Ng CY, Gaber MW, Calabrese C, Wu J, Nathwani AC, Duntsch C, Merchant TE, Davidoff AM. Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys. 2010;76(5):1537–45. doi: 10.1016/j.ijrobp.2009.12.010.
  8. Jain R, Poisson LM, Gutman D, Scarpace L, Hwang SN, Holder CA, Wintermark M, Rao A, Colen RR, Kirby J, Freymann J, Jaffe CC, Mikkelsen T, Flanders A. Outcome prediction in patients with glioblastoma by using imaging, clinical, and genomic biomarkers: focus on the nonenhancing component of the tumor. Radiology. 2014;272(2):484–93. doi: 10.1148/radiol.14131691.
  9. Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF. Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood-brain barrier defect. J Neurooncol. 1987;5(4):299–307.
  10. Roy S, Sarkar C. Ultrastructural study of micro-blood vessels in human brain tumors and peritumoral tissue. J Neurooncol. 1989;7(3): 283–92.
  11. Vaz R, Borges N, Sarmento A, Azevedo I. Reversion of phenotype of endothelial cells in brain tissue around glioblastomas. J Neurooncol. 1996;27(2):127–32.
  12. Baertling F, Kokozidou M, Pufe T, Clarner T, Windoffer R, Wruck CJ, Brandenburg LO, Beyer C, Kipp M. ADAM12 is expressed by astrocytes during experimental demyelination. Brain Res. 2010;1326:1–14. doi: 10.1016/j.brainres.2010.02.049.
  13. Kodama T, Ikeda E, Okada A, Ohtsuka T, Shimoda M, Shiomi T, Yoshida K, Nakada M, Ohuchi E, Okada Y. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol. 2004;165(5):1743–53. doi: 10.1016/S0002-9440(10)63429-3.
  14. Черников ВП, Белоусова ТА, Кактурский ЛВ. Морфологические и биохимические критерии клеточной гибели. Архив патологии. 2010;72(3):48–54.
  15. Korshunov A, Sycheva R, Golanov A. The prognostic relevance of molecular alterations in glioblastomas for patients age < 50 years. Cancer. 2005;104(4):825–32. doi: 10.1002/cncr.21221.
  16. Lee J, Lund-Smith C, Borboa A, Gonzalez AM, Baird A, Eliceiri BP. Glioma-induced remodeling of the neurovascular unit. Brain Res. 2009;1288:125–34. doi: 10.1016/j.brainres.2009.06.095.
  17. Rojiani AM, Dorovini-Zis K. Glomeruloid vascular structures in glioblastoma multiforme: an immunohistochemical and ultrastructural study. J Neurosurg. 1996;85(6):1078–84. doi: 10.3171/jns.1996.85.6.1078.
  18. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L. Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol. 1997;21(1):41–9.
  19. Amelio D, Amichetti M. Radiation therapy for the treatment of recurrent glioblastoma: an overview. Cancers (Basel). 2012;4(1):257–80. doi: 10.3390/cancers4010257.
  20. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci. 2004;19:124–8.
  21. Molnár PP, O'Neill BP, Scheithauer BW, Groothuis DR. The blood-brain barrier in primary CNS lymphomas: ultrastructural evidence of endothelial cell death. Neuro Oncol. 1999;1(2): 89–100. doi: 10.1093/neuonc/1.2.89.
  22. Taatjes DJ, Sobel BE, Budd RC. Morphological and cytochemical determination of cell death by apoptosis. Histochem Cell Biol. 2008;129(1): 33–43. doi: 10.1007/s00418-007-0356-9.
  23. Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM. Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol. 2013;10(8):1333–44. doi: 10.4161/rna.25281.
  24. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol. 1995;54(3):304–10.
  25. Cheng L, Huang Z, Zhou W, Wu Q, Donnola S, Liu JK, Fang X, Sloan AE, Mao Y, Lathia JD, Min W, McLendon RE, Rich JN, Bao S. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153(1):139–52. doi: 10.1016/j.cell.2013.02.021.
  26. Hayden MR, Yang Y, Habibi J, Bagree SV, Sowers JR. Pericytopathy: oxidative stress and impaired cellular longevity in the pancreas and skeletal muscle in metabolic syndrome and type 2 diabetes. Oxid Med Cell Longev. 2010;3(5):290–303. doi: 10.4161/oxim.3.5.13653.
  27. Castejón OJ. Ultrastructural alterations of human cortical capillary basement membrane in human brain oedema. Folia Neuropathol. 2014;52(1):10–21. doi: 10.5114/fn.2014.41740.
  28. Castejón OJ, Castejón HV, Zavala M, Sánchez ME, Díaz M. A light and electron microscopic study of oedematous human cerebral cortex in two patients with post-traumatic seizures. Brain Inj. 2002;16(4):331–46. doi: 10.1080/02699050110088209.
  29. Liwnicz BH, Leach JL, Yeh HS, Privitera M. Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue. Neurosurgery. 1990;26(3):409–20.
  30. Fan YH, Sun J, Yuan Y, Chen L, Pei Z, Xing SH, Liao B, Zeng JS. Hereditary endotheliopathy with retinopathy and encephalopathy: pathological and genetic studies of a family. Int J Clin Exp Pathol. 2015;8(8):9105–11.
  31. Балканов АС, Черников ВП, Белоусова ТА, Киселев АМ. Морфологические проявления нарушения проницаемости гематоэнцефалического барьера в диффузной глиоме головного мозга. Клиническая и экспериментальная морфология. 2014;1(9):8–12.
  32. Nduom EK, Yang C, Merrill MJ, Zhuang Z, Lonser RR. Characterization of the blood-brain barrier of metastatic and primary malignant neoplasms. J Neurosurg. 2013;119(2):427–33. doi: 10.3171/2013.3.JNS122226.
  33. Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry. 2002;72(2): 262–5. doi: 10.1136/jnnp.72.2.262.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2018 Balkanov A.S., Chernikov V.P., Golanov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies