Atomic force microscopy in the assessment of erythrocyte membrane mechanical properties with exposure to various physicochemical agents

Cover Page

Cite item


Background: Mechanical properties of cell membranes and their structural organization are considered among the most important biological parameters affecting the functional state of the cell. Under the influence of various pathogenic factors, erythrocyte membranes lose their elasticity. The resulting changes in their biomechanical characteristics is an important, but poorly studied topic. It is of interest to study the deformation of native erythrocytes to a depth compatible with their deformation in the bloodstream.

Aim: To investigate the patterns of deep deformation and the particulars of structural organization of native erythrocyte membranes before and after their exposure to physicochemical agents in vitro.

Materials and methods: Cell morphology, nanostructure characteristics, and membrane deformation of native erythrocytes in a  solution of hemoconservative CPD/SAGM were studied with atomic force microscope NTEGRA Prima. Hemin, zinc ions (Zn2+), and ultraviolet (UV) radiation were used as modifiers. To characterize the membrane stiffness, we measured the force curves F(h), hHz (the depth to which the probe immersion is described by interaction with a homogeneous medium), and the Young's modulus values of the erythrocyte membrane.

Results: Exposure to hemin, Zn2+ and UV radiation led to transformation of the cell shape, appearance of topological defects and changes in mechanical characteristics of erythrocyte membranes. Under exposure to hemin, Young's modulus increased from 10±4  kPa to 27.2±8.6  kPa (p<0.001), exposure to Zn2+, to 21.4±8.7  kPa (p=0.002), and UV, to 18.8±5.6  kPa (p=0.001). The hHz value was 815±210  nm for the control image and decreased under exposure to hemin to 420±80 nm (p<0.001), Zn2+, to 370±90 nm (p<0.001), and UV, to 614±120 nm (p=0.001).

Conclusion: The results obtained contribute to a  deeper understanding of interaction between membrane surfaces of native erythrocytes and small vessel walls. They can be useful in clinical medicine as additional characteristics for assessment of the quality of packed red blood cells, as well as serve as a basis for biophysical studies into the mechanisms of action of oxidative processes of various origins.

About the authors

E. A. Sherstyukova

V.A. Negovsky Research Institute of General Reanimatology;
I.M. Sechenov First Moscow State Medical University

Author for correspondence.
ORCID iD: 0000-0002-9962-6315

Ekaterina A. Sherstyukova – PhD (in Biol.), Senior Research Fellow, Laboratory of Biophysics of Cell Membranes in Critical States, V.A. Negovsky Research Institute of General Reanimatology; Assistant Professor, Chair of Medical and Biological Physics, I.M. Sechenov First Moscow State Medical University

25/2 Petrovka ul., Moscow, 107031

8/2 Trubetskaya ul., Moscow, 119991

Russian Federation

V. A. Inozemtsev

V.A. Negovsky Research Institute of General Reanimatology

ORCID iD: 0000-0002-4693-5624

Vladimir A. Inozemtsev – Research Fellow, Laboratory of Biophysics of Cell Membranes in Critical States

25/2 Petrovka ul., Moscow, 107031

Russian Federation

A. P. Kozlov

I.M. Sechenov First Moscow State Medical University

ORCID iD: 0000-0003-3907-080X

Aleksandr P. Kozlov – PhD (in Phys. and Math.), Associate Professor, Chair of Medical and Biological Physics

8/2 Trubetskaya ul., Moscow, 119991

Russian Federation

O. E. Gudkova

V.A. Negovsky Research Institute of General Reanimatology

ORCID iD: 0000-0001-9220-0138

Olga E. Gudkova – Senior Research Fellow, Laboratory of Biophysics of Cell Membranes in Critical States

25/2 Petrovka ul., Moscow, 107031

Russian Federation

V. A. Sergunova

V.A. Negovsky Research Institute of General Reanimatology

ORCID iD: 0000-0002-8425-0845

Viktoria A. Sergunova – PhD (in Biol.), Leading Research Fellow, Head of Laboratory of Biophysics of Cell Membranes in Critical States

25/2 Petrovka ul., Moscow, 107031

Russian Federation


  1. Tomaiuolo G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics. 2014;8(5):051501. doi: 10.1063/1.4895755.
  2. Александрова НП, Карандашов ВИ, Кудлай ДА. Особенности механизма нарушения деформируемости эритроцитов при различных заболеваниях. Тромбоз, гемостаз и реология. 2021;(1):74–80. doi: 10.25555/THR.2021.1.0965.
  3. Gutierrez M, Shamoun M, Seu KG, Tanski T, Kalfa TA, Eniola-Adefeso O. Characterizing bulk rigidity of rigid red blood cell populations in sickle-cell disease patients. Sci Rep. 2021;11(1): 7909. doi: 10.1038/s41598-021-86582-8.
  4. Shin S, Ku Y. Hemorheology and clinical application: Association of impairment of red blood cell deformability with diabetic nephropathy. Korea Aust Rheol J. 2005;17(3):117–123.
  5. Buys AV, Van Rooy MJ, Soma P, Van Papendorp D, Lipinski B, Pretorius E. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study. Cardiovasc Diabetol. 2013;12:25. doi: 10.1186/1475-2840-12-25.
  6. Xu Z, Zheng Y, Wang X, Shehata N, Wang C, Sun Y. Stiffness increase of red blood cells during storage. Microsystems Nanoeng. 2018;4:17103. doi: 10.1038/micronano.2017.103.
  7. Манченко ЕА, Козлова ЕК, Сергунова ВА, Черныш АМ. Однородная деформация нативных эритроцитов при их длительном хранении. Общая реаниматология. 2019;15(5):4–10. doi: 10.15360/1813-9779-2019-5-4-10.
  8. Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci. 2012;55(11):968–973. doi: 10.1007/s11427-012-4399-3.
  9. Dulińska I, Targosz M, Strojny W, Lekka M, Czuba P, Balwierz W, Szymoński M. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods. 2006;66(1–3):1–11. doi: 10.1016/j.jbbm.2005.11.003.
  10. Sisquella X, Nebl T, Thompson JK, Whitehead L, Malpede BM, Salinas ND, Rogers K, Tolia NH, Fleig A, O’Neill J, Tham WH, Horgen FD, Cowman AF. Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion. Elife. 2017;6:e21083. doi: 10.7554/eLife.21083.
  11. Vayá A, Rivera L, de la Espriella R, Sanchez F, Suescun M, Hernandez JL, Fácila L. Red blood cell distribution width and erythrocyte deformability in patients with acute myocardial infarction. Clin Hemorheol Microcirc. 2015;59(2):107–114. doi: 10.3233/CH-131751.
  12. Barabino GA, Platt MO, Kaul DK. Sickle cell biomechanics. Annu Rev Biomed Eng. 2010;12:345–367. doi: 10.1146/annurev-bioeng-070909-105339.
  13. Fornal M, Lekka M, Pyka-Fościak G, Lebed K, Grodzicki T, Wizner B, Styczeń J. Erythrocyte stiffness in diabetes mellitus studied with atomic force microscope. Clin Hemorheol Microcirc. 2006;35(1–2):273–276.
  14. Papi M, Ciasca G, Palmieri V, Maulucci G, Rossi C, Minelli E, De Spirito M. Nano-Mechanical Response of Red Blood Cells. Chapter 2. In: Korach CS, Tekalur SA, Zavattieri P, editors. Mechanics of Biological Systems and Materials. Vol. 6. Springer International Publishing; 2017. p. 11–16.
  15. Zhang B, Liu B, Zhang H, Wang J. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One. 2014;9(11):e112624. doi: 10.1371/journal.pone.0112624.
  16. Челнокова ИА, Шклярова АН, Цуканова ЕВ, Никитина ИА, Стародубцева МН. Влияние рентгеновского излучения на наномеханические свойства поверхности эритроцитов крыс при гиперхолестериновой диете. Проблемы здоровья и экологии. 2021;(3): 105–115. doi: 10.51523/2708-6011.2021-18-3-13.
  17. Mohandas N, Chasis JA. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 1993;30(3):171–192.
  18. Lekka M, Fornal M, Pyka-Fościak G, Lebed K, Wizner B, Grodzicki T, Styczeń J. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 2005;42(4):307–317.
  19. Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. Atomic force microscopy probing of cell elasticity. Micron. 2007;38(8):824–833. doi: 10.1016/j.micron.2007.06.011.
  20. Сергунова ВА, Козлова ЕК, Мягкова ЕА, Черныш АМ. Измерение упруго-эластичных свойств мембраны нативных эритроцитов in vitro. Общая реаниматология. 2015;11(3): 39–44. doi: 10.15360/1813-9779-2015-3-39-44.
  21. Kozlova EK, Chernysh AM, Moroz VV, Kuzovlev AN. Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images. Micron. 2013;44:218–227. doi: 10.1016/j.micron.2012.06.012.
  22. Hertz H. Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik. 1882;1882(92):156–171. German. doi: 10.1515/crll.1882.92.156.
  23. Thomas G, Burnham NA, Camesano TA, Wen Q. Measuring the mechanical properties of living cells using atomic force microscopy. J Vis Exp. 2013;(76):50497. doi: 10.3791/50497.
  24. Codan B, Martinelli V, Mestroni L, Sbaizero O. Atomic force microscopy of 3T3 and SW-13 cell lines: an investigation of cell elasticity changes due to fixation. Mater Sci Eng C Mater Biol Appl. 2013;33(6):3303–3308. doi: 10.1016/j.msec.2013.04.009.
  25. Li M, Liu L, Xu X, Xing X, Dang D, Xi N, Wang Y. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters. J Mech Behav Biomed Mater. 2018;82:193–201. doi: 10.1016/j.jmbbm.2018.03.036.
  26. Kozlova E, Chernysh A, Manchenko E, Sergunova V, Moroz V. Nonlinear biomechanical characteristics of deep deformation of native RBC membranes in normal state and under modifier action. Scanning. 2018;2018:1810585. doi: 10.1155/2018/1810585.
  27. Kozlova E, Chernysh A, Moroz V, Gudkova O, Sergunova V, Kuzovlev A. Transformation of membrane nanosurface of red blood cells under hemin action. Sci Rep. 2014;4:6033. doi: 10.1038/srep06033.
  28. Космачевская ОВ, Насыбуллина ЭИ, Блиндарь ВН, Топунов АФ. Связывание эритроцитарного гемоглобина с мембраной как способ осуществления сигнально-регуляторной функции (обзор). Прикладная биохимия и микробиология. 2019;55(2): 107–123. doi: 10.1134/S0555109919020090.
  29. Turrini F, Mannu F, Arese P, Yuan J, Low PS. Characterization of the autologous antibodies that opsonize erythrocytes with clustered integral membrane proteins. Blood. 1993;81(11):3146– 3152. doi: 10.1182/blood.V81.11.3146.3146.
  30. Chernysh AM, Kozlova EK, Moroz VV, Sergunova VA, Gudkova OYe, Fedorova MS. Reversible zinc-induced injuries to erythrocyte membrane nanostructure. Bull Exp Biol Med. 2012;154(1):84–88. doi: 10.1007/s10517-012-1881-7.
  31. Misra RB, Ray RS, Hans RK. Effect of UVB radiation on human erythrocytes in vitro. Toxicol Vitr. 2005;19(3):433–438. doi: 10.1016/j.tiv.2004.12.004.
  32. Kozlova E, Chernysh A, Sergunova V, Gudkova O, Manchenko E, Kozlov A. Atomic force microscopy study of red blood cell membrane nanostructure during oxidation-reduction processes. J Mol Recognit. 2018;31(10):e2724. doi: 10.1002/jmr.2724.
  33. Шаповалова ОО, Шамрова ЕА, Федосеев ЕН. Исследование деформируемости мембран эритроцитов у больных сахарным диабетом. Территория инноваций. 2019;1(29):80–86.
  34. Гречко АВ, Молчанов ИВ, Сергунова ВА, Козлова ЕК, Черныш АМ. Дефекты мембран эритроцитов у пациентов с нарушениями функции головного мозга (пилотное исследование). Общая реаниматология. 2019;15(6):11–20. doi: 10.15360/1813-9779-2019-6-11-20.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2021 Sherstyukova E.A., Inozemtsev V.A., Kozlov A.P., Gudkova O.E., Sergunova V.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies