Diagnostic criteria of lymphoproliferative diseases from the peripheral blood samples using a cell biochip

Cover Page


Cite item

Full Text

Abstract

Background: At present, the diagnosis of lymphoproliferative disorders is based on the combination of blood or bone marrow smear morphology and immunophenotyping by flow cytometry. Immunophenotypic testing by flow cytometry technique is available only in big medical centers, which is not always convenient for a  patient. Therefore, development of an available method for preliminary diagnosis of lymphoproliferative diseases not requiring special equipment seems relevant.

Materials and methods: Peripheral blood mononuclear cells from 17  patients admitted to the hospital with suspicion of a  lymphoproliferative disorder, and 17  healthy donors were studied on a cell biochip for determination of proportions of cells positive for various surface CD antigens. The diagnosis was verified by flow cytometry.

Results: Compared to healthy controls and patients with T-cell lymphoproliferative disorders (TCLPD), the patients with B-cell lymphoproliferative disorders (BCLPD) had significantly lower proportion of CD7+ cells (medians, 7% and 73% respectively, p=2×10-6 for comparison with healthy controls; median  7% and 93% for comparison with TCLPD, p=0.032). In addition, the patients with BCLPD had higher proportion of peripheral СD19+ mononuclear cells, compared to that in the patients with TCLPD and healthy donors (medians 84% and 13% for comparison between BCLPD and healthy control, p=2×10-5; 84% and 3% for comparison of BCLPD and TCLPD, p=0.033). The patients with B-cell chronic lymphocytic leukemia had significantly higher CD5+ cells in the cell biochip compared to the patients with other BCLPD (medians 72% and 9%, p=0.024). The patients with TCLPD had significantly lower proportion of CD19+ cells than the healthy controls (medians, 3% and 13%, respectively, р=0.042).

Conclusion: The study has demonstrated the potential to use the previously developed cell biochip for diagnosis of lymphoproliferative diseases. The biochip makes it possible to sort out white blood cells according to their surface differentiation antigen for their further morphological analysis. The cell biochip allows for the differential diagnosis between BCLPD and TCLPD and determination the lymphocyte clones based on the expression of immunoglobulin light chains.

About the authors

O. S. Fedyanina

Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences;
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: fake@neicon.ru
ORCID iD: 0000-0001-7131-8006

Olga S. Fedyanina – PhD (in Biol.), Senior Research Fellow, Engineering Department Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences; Leading Research Fellow, Laboratory of Biophysics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

30 Srednyaya Kalitnikovskaya ul., Moscow, 109029; 

1 Samory Mashela ul., Moscow, 117198

Russian Federation

Yu. Yu. Chuksina

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru
ORCID iD: 0000-0002-4744-347X

Yuliya Yu. Chuksina – MD, PhD, Senior Research Fellow, Laboratory of Biomedical Research Methods 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

A. N. Khmelevskaya

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Anna N. Khmelevskaya – Junior Research Fellow, Laboratory of Biomedical Research Methods 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

A. N. Khvastunova

Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Email: fake@neicon.ru
ORCID iD: 0000-0002-7117-0168

Alina N. Khvastunova – PhD (in Biol.), Research Fellow, Laboratory of Biophysics 

1 Samory Mashela ul., Moscow, 117198

Russian Federation

Yu. N. Matveev

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru

Yuriy N. Matveev – Senior Technician, Laboratory of Biomedical Research Methods 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

E. V. Kataeva

Moscow Regional Research and Clinical Institute (MONIKI)

Email: fake@neicon.ru
ORCID iD: 0000-0003-2650-7646

Elena V. Kataeva – MD, PhD, Senior Research Fellow, Department of Clinical Hematology and Immunotherapy 

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

A. V. Filatov

National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0002-6460-9427

Alexandr V. Filatov – Doctor of Biol. Sci., Professor, Head of Laboratory of Immunochemistry 

24 Kashirskoe shosse, Moscow, 115522

Russian Federation

S. A. Kuznetsova

Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences;
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

Author for correspondence.
Email: kuznetsova.sonya@gmail.com
ORCID iD: 0000-0001-5946-0026

Sofya A. Kuznetsova – PhD (in Phys. and Math.), Head of Engineering Department Center for Theoretical Problems of Physical and Chemical Pharmacology, Russian Academy of Sciences; Leading Research Fellow, Laboratory of Biophysics Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology

30 Srednyaya Kalitnikovskaya ul., Moscow, 109029; 

1 Samory Mashela ul., Moscow, 117198

Russian Federation

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1): 7–33. doi: 10.3322/caac.21654.
  2. Самойлова ОС. Современное лечение хронического лимфолейкоза в реальной клинической практике. Новые возможности и новые сложности. Современная онкология. 2016; 18 (5): 16–19.
  3. Khvastunova AN, Kuznetsova SA, Al-Radi LS, Vylegzhanina AV, Zakirova AO, Fedyanina OS, Filatov AV, Vorobjev IA, Ataullakhanov F. Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare cell populations and suggesting preliminary diagnosis in leukemia. Sci Rep. 2015;5:12573. doi: 10.1038/srep12573.
  4. Хвастунова АН, Аль-Ради ЛС, Капранов НМ, Федянина ОС, Горгидзе ЛА, Луговская СА, Наумова ЕВ, Джулакян УЛ, Филатов АВ, Атауллаханов ФИ, Кузнецова СА. Использование клеточного биочипа в диагностике волосатоклеточного лейкоза. Онкогематология. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45.
  5. de Weerdt Iris, Hofland T, de Boer R, Dobber JA, Dubois J, van Nieuwenhuize D, Mobasher M, de Boer F, Hoogendoorn M, Velders GA, van der Klift M, Remmerswaal EBM, Bemelman FJ, Niemann CU, Kersting S, Levin MD, Eldering E, Tonino SH, Kater AP. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642–2652. doi: 10.1182/bloodadvances.2019000360.
  6. Gorczyca W, Weisberger J, Liu Z, Tsang P, Hossein M, Wu CD, Dong H, Wong JYL, Tugulea S, Dee S, Melamed MR, Darzynkiewicz Z. An approach to diagnosis of T-cell lymphoproliferative disorders by flow cytometry. Cytometry. 2002;50(3):177–190. doi: 10.1002/cyto.10003.
  7. Kaleem Z, White G, Zutter MM. Aberrant expression of T-cell-associated antigens on B-cell non-Hodgkin lymphomas. Am J Clin Pathol. 2001;115(3):396–403. doi: 10.1309/v8yg-8pp4-b4te-9x6j.
  8. Kingma DW, Imus P, Xie XY, Jasper G, Sorbara L, Stewart C, Stetler-Stevenson M. CD2 is expressed by a subpopulation of normal B cells and is frequently present in mature B-cell neoplasms. Cytometry. 2002;50(5):243–248. doi: 10.1002/cyto.10131.
  9. Федянина ОС, Задорожная АЕ, Хвастунова АН, Кольцова ЕМ, Балашова ЕН, Тимофеева ЛА, Караваева АЛ, Шаманова МБ, Волков СН, Бурова ОС, Дашкевич НМ, Филатов АВ, Кузнецова СА. Исследование клеточного состава и морфологии лейкоцитов доношенных и недоношенных новорожденных при помощи клеточного биочипа. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(4):11–16. doi: 10.24287/1726-1708-2018-17-4-11-16.
  10. D'Arena G, Musto P, Cascavilla N, Dell'Olio M, Di Renzo N, Carotenuto M. Quantitative flow cytometry for the differential diagnosis of leukemic B-cell chronic lymphoproliferative disorders. Am J Hematol. 2000;64(4):275–281. doi: 10.1002/1096-8652(200008)64:4<275::aidajh7>3.0.co;2-y.
  11. Mahe E, Pugh T, Kamel-Reid S. T cell clonality assessment: past, present and future. J Clin Pathol. 2018;71(3):195–200. doi: 10.1136/jclinpath-2017-204761.
  12. Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, O'Brien S, Gribben J, Rai K. Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 2017;3:16096. doi: 10.1038/nrdp.2016.96.
  13. Chiorazzi N, Chen SS, Rai KR. Chronic Lymphocytic Leukemia. Cold Spring Harb Perspect Med. 2021;11(2):a035220. doi: 10.1101/cshperspect.a035220.
  14. Debord C, Wuillème S, Eveillard M, Theisen O, Godon C, Le Bris Y, Béné MC. Flow cytometry in the diagnosis of mature B-cell lymphoproliferative disorders. Int J Lab Hematol. 2020;42(S1): 113–120. doi: 10.1111/ijlh.13170.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Fedyanina O.S., Chuksina Y.Y., Khmelevskaya A.N., Khvastunova A.N., Matveev Y.N., Kataeva E.V., Filatov A.V., Kuznetsova S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies