The contribution of the AGT, GNB3, MTHFR, MTRR, ApoE, and PPARα polymorphisms to the development of masked arterial hypertension in patients with low and moderate cardiovascular risk

Cover Page

Cite item

Abstract

Aim: To assess the probability of masked arterial hypertension (MAH) in patients with low and moderate cardiovascular risk depending on polymorphisms in selected genes.

Materials and methods: Ninety two (92) patients (mean age, 41.93±8.92 years) with low and moderate cardiovascular risk without any documented cardiovascular disorders were assessed clinically and had 24-hour ECG monitoring performed, as well as genotyping on the following markers: AGT Thr174Met rs4762, GNB3 C825T rs5443, MTHFR C677T rs1801133, MTRR Ile22Met rs1801394, ApoE Cys130Arg rs 429358, and PPARα G/C rs4253778. Depending on the presence of MAH, the patients were divided into two groups: with newly diagnosed arterial hypertension corresponding to the MAH criteria (n=58, 63%) and with normal office-based and ambulatory blood pressure and normal blood pressure according to the results of 24-hour ECG monitoring (n=34, 37%).

Results: Two groups were not different by their age, cardiovascular risk factors, concomitant diseases and clinical characteristics. There were more men than women in the MAH group (р=0.028). In MAH patients, the most prevalent was Ile22Met rs1801394 A/G polymorphism of the MTRR gene (the odds ratio (OR) and relative risk (RR) for MAH were 4.23 [95% сonfidence interval (CI) 1.56–11.72] and 2.17  [1.25–4.12], respectively). The Cys130Arg rs 429358 Т/С genotype polymorphism of the АроЕ gene was also significant. The probability of MAH in the patients with АроЕ Т/С genotype was more than 3-fold higher: OR 3.67  [95%  CI 1.34–10.28], RR 2.15  [95%  CI 1.17–4.36]. The correlation analysis showed a moderate association between MAH and MTRR and АроЕ gene polymorphisms (Q=0.62 and Q=0.57, respectively).

Conclusion: In patients with low and moderate cardiovascular risk, the probability of MAH depends not only from their gender, but also from their genetic background. The candidate genes for MAH in such patients are Ile22Met rs1801394 A/G polymorphism of the MTRR gene and Cys130Arg rs 429358 Т/С polymorphism of the АроЕ gene.

About the authors

N. A. Koziolova

Academician Ye.A. Vagner Perm State Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-7003-5186

Natalya A. Koziolova – MD, PhD, Professor, Head of Chair of Propaedeutics of Internal Diseases No. 2

26 Petropavlovskaya ul., Perm, 614990, Russian Federation

Russian Federation

A. I. Chernyavina

Academician Ye.A. Vagner Perm State Medical University

Author for correspondence.
Email: anna_chernyavina@list.ru
ORCID iD: 0000-0002-0051-6694

Anna I. Chernyavina – MD, PhD, Associate Professor, Chair of Propaedeutics of Internal Diseases No. 2

26 Petropavlovskaya ul., Perm, 614990, Russian Federation

Russian Federation

References

  1. Гельцер БИ, Котельников ВН, Ветрова ОО, Карпов РС. Маскированная артериальная гипертензия: распространенность, патофизиологические детерминанты и клиническое значение. Российский кардиологический журнал. 2019;(9):92–98. doi: 10.15829/1560-4071-2019-9-92-98.
  2. Кобалава ЖД, Конради АО, Недогода СВ, Шляхто ЕВ, Арутюнов ГП, Баранова ЕИ, Барбараш ОЛ, Бойцов СА, Вавилова ТВ, Виллевальде СВ, Галявич АС, Глезер МГ, Гринева ЕН, Гринштейн ЮИ, Драпкина ОМ, Жернакова ЮВ, Звартау НЭ, Кисляк ОА, Козиолова НА, Космачева ЕД, Котовская ЮВ, Либис РА, Лопатин ЮМ, Небиеридзе ДВ, Недошивин АО, Остроумова ОД, Ощепкова ЕВ, Ратова ЛГ, Скибицкий ВВ, Ткачева ОН, Чазова ИЕ, Чесникова АИ, Чумакова ГА, Шальнова СА, Шестакова МВ, Якушин СС, Янишевский СН. Артериальная гипертензия у взрослых. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(3):3786. doi: 10.15829/1560- 4071-2020-3-3786.
  3. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, Clement DL, Coca A, de Simone G, Dominiczak A, Kahan T, Mahfoud F, Redon J, Ruilope L, Zanchetti A, Kerins M, Kjeldsen SE, Kreutz R, Laurent S, Lip GYH, McManus R, Narkiewicz K, Ruschitzka F, Schmieder RE, Shlyakhto E, Tsioufis C, Aboyans V, Desormais I; Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36(10):1953–2041. doi: 10.1097/HJH.0000000000001940.
  4. Aung K, Htay T. Relationship Between Outpatient Clinic and Ambulatory Blood Pressure Measurements and Mortality. Curr Cardiol Rep. 2019;21(5):28. doi: 10.1007/s11886-019- 1114-z.
  5. Lyamina NP, Nalivaeva AV, Senchikhin VN, Lipchanskaya TP. [Masked hypertension in young persons: prevalence, significance of cardiovascular risk factors and prognosis by gender differences]. Russian Journal of Cardiology. 2017;(4):7–12. Russian. doi: 10.15829/1560- 4071-2017-4-7-12.
  6. Anstey DE, Booth JN 3rd, Abdalla M, Spruill TM, Min YI, Muntner P, Shimbo D. Predicted Atherosclerotic Cardiovascular Disease Risk and Masked Hypertension Among Blacks in the Jackson Heart Study. Circ Cardiovasc Qual Outcomes. 2017;10(7):e003421. doi: 10.1161/ CIRCOUTCOMES.116.003421.
  7. Aronow WS. Masked hypertension. Ann Transl Med. 2017;5(23):456. doi: 10.21037/ atm.2017.09.24.
  8. Кардиоваскулярная профилактика 2017. Российские национальные рекомендации. Российский кардиологический журнал. 2018;(6):7–122. doi: 10.15829/1560-4071- 2018-6-7-122.
  9. Чернявина АИ, Суровцева МВ. Вклад полиморфизма генов сердечно-сосудистого риска в развитие артериального ремоделирования в зависимости от наличия артериальной гипертензии. Российский кардиологический журнал. 2018;(1):43–50. doi: 10.15829/1560-4071-2018-1-43-50.
  10. Kolovou V, Lagou E, Mihas C, Vasiliki G, Katsiki N, Kollia A, Triposkiadis F, Degiannis D, Mavrogeni S, Kolovou G. Angiotensinogen (AGT) M235T, AGT T174M and Angiotensin-1-Converting Enzyme (ACE) I/D Gene Polymorphisms in Essential Hypertension: Effects on Ramipril Efficacy. Open Cardiovasc Med J. 2015;9:118–126. doi: 10.2174/1874192401509010118.
  11. Hu PY, Wang YW, Pang XH, Wang HW. T174M polymorphism in the angiotensinogen gene and risk of myocardial infarction: a meta-analysis. Genet Mol Res. 2015;14(2):3767–3774. doi: 10.4238/2015.April.22.5.
  12. Li M, Zhang B, Li C, Liu JL, Wang LJ, Liu Y, Wang ZG, Wen SJ. G-protein beta 3 subunit polymorphisms and essential hypertension: a case-control association study in northern Han Chinese. J Geriatr Cardiol. 2015;12(2):127–134. doi: 10.11909/j.issn.1671- 5411.2015.02.004.
  13. Semplicini A, Grandi T, Sandonà C, Cattelan A, Ceolotto G. G-Protein β3-Subunit Gene C825T Polymorphism and Cardiovascular Risk: An Updated Review. High Blood Press Cardiovasc Prev. 2015;22(3):225–232. doi: 10.1007/ s40292-015-0093-4.
  14. Li WX, Dai SX, Zheng JJ, Liu JQ, Huang JF. Homocysteine Metabolism Gene Polymorphisms (MTHFR C677T, MTHFR A1298C, MTR A2756G and MTRR A66G) Jointly Elevate the Risk of Folate Deficiency. Nutrients. 2015;7(8):6670– 6687. doi: 10.3390/nu7085303.
  15. Wu H, Wang B, Ban Q, Chen L, Yan D, Yu Y, Song Y, Liu C, Cao J, Zhang J, Zhang Y, Zhang T, Zhang H, Guo H, Tang G, Zhang Y, Li J, Huo Y, Zang T, Qin X, Xu X. Association of total homocysteine with blood pressure in a general population of Chinese adults: a cross-sectional study in Jiangsu province, China. BMJ Open. 2018;8(6):e021103. doi: 10.1136/bmjopen-2017-021103.
  16. Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J, Song Y. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018;17(1):191. doi: 10.1186/s12944-018- 0837-y.
  17. Li WX, Lv WW, Dai SX, Pan ML, Huang JF. Joint associations of folate, homocysteine and MTHFR, MTR and MTRR gene polymorphisms with dyslipidemia in a Chinese hypertensive population: a cross-sectional study. Lipids Health Dis. 2015;14:101. doi: 10.1186/s12944- 015-0099-x.
  18. Zhen J, Huang X, Van Halm-Lutterodt N, Dong S, Ma W, Xiao R, Yuan L. ApoE rs429358 and rs7412 Polymorphism and Gender Differences of Serum Lipid Profile and Cognition in Aging Chinese Population. Front Aging Neurosci. 2017;9:248. doi: 10.3389/fnagi.2017.00248.
  19. Wu S, Hsu LA, Teng MS, Lin JF, Chou HH, Lee MC, Wu YM, Su CW, Ko YL. Interactive effects of C-reactive protein levels on the association between APOE variants and triglyceride levels in a Taiwanese population. Lipids Health Dis. 2016;15:94. doi: 10.1186/s12944-016- 0262-z.
  20. Ruscica M, Busnelli M, Runfola E, Corsini A, Sirtori CR. Impact of PPAR-Alpha Polymorphisms – The Case of Metabolic Disorders and Atherosclerosis. Int J Mol Sci. 2019;20(18): 4378. doi: 10.3390/ijms20184378.

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 Koziolova N.A., Chernyavina A.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies