Cell technologies in the regenerative medicine of the heart: main problems and ways of development

Cover Page

Cite item


The potential of heart tissues for self-regeneration is not high and supposedly limited to a small number of the niche stem cells. This makes it extremely important to develop regenerative technologies for the myocardium based on modern techniques, for instance, cell re-programming and 3D bioprinting. However, it is often difficult to differentiate the  sensational reports regularly appearing in mass media on “breakthrough” technologies from those that really have practical applications. The article sets out a point of view on the popular technologies for the regeneration of cardiac tissues and myocardium as a whole and reviews their drawbacks. The main problems of the bioprinting approach being actively developed include a low differentiation level with printing by stem cells that does not allow for a full-fledged cardiac tissue without foreign inclusions, as well as technological impossibility, when printing with stem cells, to set up their links with other cells during cell delivery in their corresponding matrix locations. Despite some optimistic reports on the good performance on stem or induced pluripotent cells injections into the myocardial injury zone that were first made public about 20  years ago, nowadays this idea seems rather doubtful, because in the recent years there has been virtually no positive effect of this procedure with a serious risk of complications. As far as growing of heart muscle elements is concerned, the main challenge is the development of the “proper” vascularization of the muscle being grown. At the same time, one has to emphasize practical feasibility of growing relatively small myocardial elements, such as sinus node.

About the authors

K. I. Agladze

Moscow Institute of Physics and Technology

Author for correspondence.
Email: kagladze@gmail.com
ORCID iD: 0000-0002-9258-436X

Konstantin I. Agladze – PhD (in Physics and Mathematics), Professor, Head of the Laboratory of Biophysics of Excitable Systems.

9 Institutskiy pereulok, Dolgoprudny, Moskovskaya oblast', 141701, tel.: +7 (495) 408 46 45

Russian Federation


  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220. doi: 10.1161/CIR.0b013e31823ac046.
  2. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation. 1998;98(21):2334–51. doi: 10.1161/01.cir.98.21.2334.
  3. Centurión OA, Alderete JF, Torales JM, García LB, Scavenius KE, Miño LM. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. Crit Pathw Cardiol. 2019;18(2):89–97. doi: 10.1097/HPC.0000000000000171.
  4. Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins RW, Lecapitaine N, Cascapera S, Beltrami AP, D'Alessandro DA, Zias E, Quaini F, Urbanek K, Michler RE, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci U S A. 2007;104(35):14068–73. doi: 10.1073/pnas.0706760104.
  5. Narula J, Haider N, Virmani R, DiSalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. Apoptosis in myocytes in end-stage heart failure. N Engl J Med. 1996;335(16):1182–9. doi: 10.1056/NEJM199610173351603.
  6. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5. doi: 10.1038/35070587.
  7. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107(11):1395–402. doi: 10.1172/JCI12150.
  8. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009–17. doi: 10.1161/01.cir.0000043246.74879.cd.
  9. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57. doi: 10.1016/S0140-6736(11)61590-0. Retracted article (Lancet. 2019;393(10176):1084. doi: 10.1016/S0140-6736(19)30542-2).
  10. Packer M. The alchemist's nightmare: might mesenchymal stem cells that are recruited to repair the injured heart be transformed into fibroblasts rather than cardiomyocytes? Circulation. 2018;137(19):2068–73. doi: 10.1161/CIRCULATIONAHA.117.032190.
  11. Lee SH, Hong JH, Cho KH, Noh JW, Cho HJ. Discrepancy between short-term and long-term effects of bone marrow-derived cell therapy in acute myocardial infarction: a systematic review and meta-analysis. Stem Cell Res Ther. 2016;7(1):153. doi: 10.1186/s13287-016-0415-z.
  12. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J. 2006;20(6): 661–9. doi: 10.1096/fj.05-5211com.
  13. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204–19. doi: 10.1161/CIRCRESAHA.108.176826.
  14. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9). pii: E1852. doi: 10.3390/ijms18091852.
  15. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi: 10.1016/j.cell.2006.07.024.
  16. Julian K, Yuhasz N, Hollingsworth E, Imitola J. The "Growing" Reality of the Neurological Complications of Global "Stem Cell Tourism". Semin Neurol. 2018;38(2):176–81. doi: 10.1055/s-0038-1649338.
  17. Gapska P, Kurpisz M. Perspective in optimization of stem cell therapies for heart regeneration. Postepy Hig Med Dosw (Online). 2017;71(0): 975–87. doi: 10.5604/01.3001.0010.6665.
  18. Mohammadi D. The dangers of unregulated stem-cell marketing. Lancet. 2017;390(10105): 1823–4. doi: 10.1016/S0140-6736(17)32358-9.
  19. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol. 2011;13(5): 497–505. doi: 10.1038/ncb0511-497.
  20. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120(5):408–16. doi: 10.1161/CIRCULATIONAHA.109.865154.
  21. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y. Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation. 2012;126(11 Suppl 1):S29–37. doi: 10.1161/CIRCULATIONAHA.111.084343.
  22. Morris GM, Boyett MR. Perspectives – biological pacing, a clinical reality? Ther Adv Cardiovasc Dis. 2009;3(6):479–83. doi: 10.1177/1753944709345792.
  23. Xiao YF, Sigg DC. Biological approaches to generating cardiac biopacemaker for bradycardia. Sheng Li Xue Bao. 2007;59(5):562–70.
  24. Ambesh P, Kapoor A. Biological pacemakers: Concepts and techniques. Natl Med J India. 2017;30(6):324–6. doi: 10.4103/0970-258X.239072.
  25. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33(6):1782–90. doi: 10.1016/j.biomaterials.2011.11.003.
  26. Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem cell spheroids and ex vivo niche modeling: rationalization and scaling-up. J Cardiovasc Transl Res. 2017;10(2):150–66. doi: 10.1007/s12265-017-9741-5.
  27. Salvi M, Morbiducci U, Amadeo F, Santoro R, Angelini F, Chimenti I, Massai D, Messina E, Giacomello A, Pesce M, Molinari F. Automated segmentation of fluorescence microscopy images for 3D cell detection in human-derived cardiospheres. Sci Rep. 2019;9(1):6644. doi: 10.1038/s41598-019-43137-2.
  28. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH, Cho DW. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935.
  29. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773–85. doi: 10.1038/nbt.2958.
  30. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication. 2012;4(3): 035005. doi: 10.1088/1758-5082/4/3/035005.
  31. Rajabi S, Pahlavan S, Ashtiani MK, Ansari H, Abbasalizadeh S, Sayahpour FA, Varzideh F, Kostin S, Aghdami N, Braun T, Baharvand H. Human embryonic stem cell-derived cardiovascular progenitor cells efficiently colonize in bFGF-tethered natural matrix to construct contracting humanized rat hearts. Biomaterials. 2018;154:99–112. doi: 10.1016/j.biomaterials.2017.10.054.
  32. Duan B. State-of-the-art review of 3D bioprinting for cardiovascular tissue engineering. Ann Biomed Eng. 2017;45(1):195–209. doi: 10.1007/s10439-016-1607-5.
  33. Слотвицкий ММ, Цвелая ВА, Фролова ШР, Дементьева ЕВ, Агладзе КИ. Исследование функциональности получаемых из индуцированных плюрипотентных стволовых клеток кардиомиоцитов для моделирования сердечных аритмий при синдроме удлиненного интервала QT. Вавиловский журнал генетики и селекции. 2018;22(2):187–95. doi: 10.18699/VJ18.346.
  34. Slotvitsky M, Tsvelaya V, Frolova S, Dementyeva E, Agladze K. Arrhythmogenicity Test Based on a Human-Induced Pluripotent Stem Cell (iPSC)-Derived Cardiomyocyte Layer. Toxicol Sci. 2019;168(1):70–7. doi: 10.1093/toxsci/kfy274.
  35. Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur Heart J. 2013;34(15):1147–56. doi: 10.1093/eurheartj/ehs418.
  36. Agladze K, Kay MW, Krinsky V, Sarvazyan N. Interaction between spiral and paced waves in cardiac tissue. Am J Physiol Heart Circ Physiol. 2007;293(1):H503–13. doi: 10.1152/ajpheart.01060.2006.
  37. Orlova Y, Magome N, Liu L, Chen Y, Agladze K. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials. 2011;32(24):5615–24. doi: 10.1016/j.biomaterials.2011.04.042.
  38. Yang J, Yamato M, Shimizu T, Sekine H, Ohashi K, Kanzaki M, Ohki T, Nishida K, Okano T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials. 2007;28(34):5033–43. doi: 10.1016/j.biomaterials.2007.07.052.
  39. Williams C, Xie AW, Yamato M, Okano T, Wong JY. Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials. 2011;32(24):5625–32. doi: 10.1016/j.biomaterials.2011.04.050.
  40. Williams C, Tsuda Y, Isenberg BC, Yamato M, Shimizu T, Okano T, Wong JY. Aligned cell sheets grown on thermo-responsive substrates with microcontact printed protein patterns. Advanced Materials. 2009;21:2161–4. doi: 10.18699/vj18.346.
  41. Takahashi H, Okano T. Thermally-triggered fabrication of cell sheets for tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2019;138:276–92. doi: 10.1016/j.addr.2019.01.004.
  42. Stoehr A, Hirt MN, Hansen A, Seiffert M, Conradi L, Uebeler J, Limbourg FP, Eschenhagen T. Spontaneous formation of extensive vessel-like structures in murine engineered heart tissue. Tissue Eng Part A. 2016;22(3–4):326–35. doi: 10.1089/ten.TEA.2015.0242.
  43. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization – the conduit to viable engineered tissues. Tissue Eng Part B Rev. 2009;15(2):159–69. doi: 10.1089/ten.teb.2008.0193.
  44. Sekine H, Shimizu T, Hobo K, Sekiya S, Yang J, Yamato M, Kurosawa H, Kobayashi E, Okano T. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 2008;118(14 Suppl):S145–52. doi: 10.1161/CIRCULATIONAHA.107.757286.
  45. Sukmana I. Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct. ScientificWorldJournal. 2012;2012:201352. doi: 10.1100/2012/201352.
  46. Paez-Mayorga J, Hernández-Vargas G, Ruiz-Esparza GU, Iqbal HMN, Wang X, Zhang YS, Parra-Saldivar R, Khademhosseini A. Bioreactors for cardiac tissue engineering. Adv Healthc Mater. 2019;8(7):e1701504. doi: 10.1002/adhm.201701504.
  47. Christalla P, Hudson JE, Zimmermann WH. The cardiogenic niche as a fundamental building block of engineered myocardium. Cells Tissues Organs. 2012;195(1–2):82–93. doi: 10.1159/000331407.
  48. Hogan M, Chen YT, Kolhatkar AG, Candelari CJ, Madala S, Lee TR, Birla R. Conditioning of cardiovascular tissue using a noncontact magnetic stretch bioreactor with embedded magnetic nanoparticles. CS Biomater Sci Eng. 2016;2(9):1619–29. doi: 10.1021/acsbiomaterials.6b00375.
  49. Chauveau S, Brink PR, Cohen IS. Stem cell-based biological pacemakers from proof of principle to therapy: a review. Cytotherapy. 2014;16(7): 873–80. doi: 10.1016/j.jcyt.2014.02.014.
  50. Morris GM, Kingston PA, Lei M, Dobrzynski H, Robinson RB, Boyett MR. A cardiac biopacemaker created by acceleration of a subsidiary pacemaker via adenovirus mediated expression of a chimaeric pacemaker channel, HCN212. European Heart Journal. 2010;31 Suppl 1:77.
  51. Chauveau S, Anyukhovsky EP, Ben-Ari M, Naor S, Jiang YP, Danilo P Jr, Rahim T, Burke S, Qiu X, Potapova IA, Doronin SV, Brink PR, Binah O, Cohen IS, Rosen MR. Induced pluripotent stem cell-derived cardiomyocytes provide in vivo biological pacemaker function. Circ Arrhythm Electrophysiol. 2017;10(5):e004508. doi: 10.1161/CIRCEP.116.004508.
  52. Balashov VA, Agladze KI. Model implantation of photosensitive cells reveals necessary cluster size needed for pacing of the heart culture. Journal of Bioenergetics and Biomembranes. 2018;50(6):524–5. doi: 10.1007/s10863-018-9775-7.
  53. Balashov V, Chepeleva E, Tsvelaya V, Slotvitsky M, Pavlova S, Ponomarenko A, Dokuchaeva A, Vasilieva M, Krasilnikova A, Strelnikov A, Agladze K, Pokushalov E, Sergeevichev D. Use of Polylactic nanofibrous scaffolds as a substrate for cardiomyocytes cultivation. AIP Conference Proceedings. 2018;2051(1):020024. doi: 10.1063/1.5083267.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2019 Agladze K.I.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies