Synthetic leu-enkefalin analogue prevents activation of neutrophils induced by a bacterial component

Cover Page

Cite item


Background: Neutrophil activation is a  mandatory stage and a  sensitive marker of systemic inflammatory response. The development of this condition is associated with subsequent multiple organ failure which is the main indication for the patients stay in the intensive care unit. The search for drugs that could prevent the development of systemic inflammatory response and reduce mortality remains an urgent task of anesthesiology/resuscitation.

Aim: To study the anti-inflammatory effect of dalargin, a synthetic analogue of lei-enkephalin, on human neutrophils in vitro.

Materials and methods: The study was performed on blood neutrophils isolated from 5 healthy donors. A proportion of neutrophils were activated by 10 mkM formil-Met-Leu-Pro (fMLP) and 100 ng/mL lipopolysaccharide (LPS) with subsequent assessment of their activity by fluorescent antibodies to the degranulation markers CD11b and CD66b. Thereafter intact and activated neutrophils were treated with dalargin solution at concentrations of 50 and 100 mcg/mL.

Results: Dalargin at 100 mcg/mL reduced the expression of CD11b molecules on the surface of intact neutrophils by 5.5-fold (p=0.008). On the contrary, LPS at a  dose of 100  ng/mL increased the expression of the same molecules by 46% (p=0.08). The addition of dalargin at 50 mcg/mL to LPS-activated neutrophils reduced the expression of CD11b molecules (p=0.016). The addition of dalargin at 50  mcg/mL to fMLP-activated neutrophils significantly (p=0.008) reduced the expression of CD11b molecules and reversed their expression virtually to the level of the control. The addition of dalargin at 100  mcg/mL to neutrophils activated by fMLP at 10 mkM reduced the expression of CD11b on their surface to a level below the control by 23% (p=0.08).

Conclusion: Dalargin at the studied concentrations has an anti-inflammatory effect on both intact and pre-activated bacterial components of neutrophils, thus inhibiting the process of activation and degranulation in a dose-dependent manner. 

About the authors

O. A. Grebenchikov

Moscow Regional Research and Clinical Institute (MONIKI); Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology

Author for correspondence.
ORCID iD: 0000-0001-9045-6017

Oleg A. Grebenchikov - MD, PhD, Leading Research Fellow, Intensive Care Department MONIKI; Head of the Laboratory of Organ Protection in Critical Conditions, V.A. Negovsky Research Institute of General Reanimatology.

61/2 Shchepkina ul., Moscow, 129110, Tel.: +7 (495) 631 74 82

Russian Federation

A. K. Shabanov

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology; N.V. Sklifosovsky Research Institute of Emergency Medicine

ORCID iD: 0000-0002-3417-2682

Aslan K. Shabanov - MD, PhD, Chief Research Fellow, Laboratory of Clinical Pathophysiology of Critical Conditions, V.A. Negovsky Research Institute of General Reanimatology; Senior Research Fellow, Reanimation and Intensive Care Emergency Department N.V. Sklifosovsky RIEM.

25/2 Petrovka ul., Moscow, 107031; 3 Bolshaya Sukharevskaya ploshchad, Moscow, 129090

Russian Federation

A. A. Kosov

Moscow Regional Research and Clinical Institute (MONIKI)


Artem A. Kosov - Junior Research Fellow, Department of Organ Transplantation Surgery and Dialysis.

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

Yu. V. Skripkin

Moscow Regional Research and Clinical Institute (MONIKI)

ORCID iD: 0000-0002-6747-2833

Yuri V. Skripkin - MD, PhD, Head of Department of Reanimation and Intensive Care.

61/2 Shchepkina ul., Moscow, 129110

Russian Federation

A. G. Yavorovsky

I.M. Sechenov First Moscow State Medical University


Andrey G. Yavorovsky - MD, PhD, Professor, Head of the Anesthesiology and Reanimation Department.

8/2 Trubetskaya ul., Moscow, 119991

Russian Federation

V. V. Likhvantsev

Moscow Regional Research and Clinical Institute (MONIKI)

ORCID iD: 0000-0002-5442-6950

Valery V. Likhvantsev - MD, PhD, Professor, Chief of Department of Reanimation and Intensive Care.

61/2 Shchepkina ul., Moscow, 129110

Russian Federation


  1. Balk RA. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today? Virulence. 2014;5(1):20–6. doi: 10.4161/viru.27135.
  2. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55(5):453–62. doi: 10.1002/glia.20467.
  3. Alexander JJ, Jacob A, Cunningham P, Hensley L, Quigg RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008;52(3): 447–56. doi: 10.1016/j.neuint.2007.08.006.
  4. Jaffer U, Wade RG, Gourlay T. Cytokines in the systemic inflammatory response syndrome: a review. HSR Proc Intensive Care Cardiovasc Anesth. 2010;2(3):161–75.
  5. Parkos CA, Colgan SP, Madara JL. Interactions of neutrophils with epithelial cells: lessons from the intestine. J Am Soc Nephrol. 1994;5(2):138–52.
  6. Schmidt T, Zündorf J, Grüger T, Brandenburg K, Reiners AL, Zinserling J, Schnitzler N. CD66b overexpression and homotypic aggregation of human peripheral blood neutrophils after activation by a gram-positive stimulus. J Leukoc Biol. 2012;91(5):791–802. doi: 10.1189/jlb.0911483.
  7. Lilius EM, Nuutila J. Bacterial infections, DNA virus infections, and RNA virus infections manifest differently in neutrophil receptor expression. ScientificWorldJournal. 2012;2012:527347. doi: 10.1100/2012/527347.
  8. Lioté F, Boval-Boizard B, Weill D, Kuntz D, Wautier JL. Blood monocyte activation in rheumatoid arthritis: increased monocyte adhesiveness, integrin expression, and cytokine release. Clin Exp Immunol. 1996;106(1):13–9. doi: 10.1046/j.1365-2249.1996.d01-820.x.
  9. Mastej K, Adamiec R. Neutrophil surface expression of CD11b and CD62L in diabetic microangiopathy. Acta Diabetol. 2008;45(3): 183–90. doi: 10.1007/s00592-008-0040-0.
  10. Weirich E, Rabin RL, Maldonado Y, Benitz W, Modler S, Herzenberg LA, Herzenberg LA. Neutrophil CD11b expression as a diagnostic marker for early-onset neonatal infection. J Pediatr. 1998;132(3 Pt 1):445–51. doi: 10.1016/S0022-3476(98)70018-6.
  11. Muller Kobold AC, Tulleken JE, Zijlstra JG, Sluiter W, Hermans J, Kallenberg CG, Tervaert JW. Leukocyte activation in sepsis; correlations with disease state and mortality. Intensive Care Med. 2000;26(7):883–92.
  12. Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? Virulence. 2014;5(1):45–56. doi: 10.4161/viru.26516.
  13. Ball L, Costantino F, Pelosi P. Postoperative complications of patients undergoing cardiac surgery. Curr Opin Crit Care. 2016;22(4):386– 92. doi: 10.1097/MCC.0000000000000319.
  14. Лихванцев ВВ, Гребенчиков ОА, Борисов КЮ, Шайбакова ВЛ, Шапошников АА, Черпаков РА, Шмелева ЕВ. Механизмы фармакологического прекондиционирования мозга и сравнительная эффективность препаратов – ингибиторов гликоген-синтетазы-киназы – 3 бета прямого и непрямого действия (экспериментальное исследование). Общая реаниматология. 2012;8(6):37. doi: 10.15360/1813-9779-2012-6-37.
  15. Лихванцев ВВ, Гребенчиков ОА, Шапошников АА, Борисов КЮ, Черпаков РА, Шульгина НМ. Фармакологическое прекондиционирование: роль опиоидных пептидов. Общая реаниматология. 2012;8(3):51. doi: 10.15360/1813-9779-2012-3-51.
  16. Schultz JJ, Hsu AK, Gross GJ. Ischemic preconditioning and morphine-induced cardioprotection involve the delta (delta)-opioid receptor in the intact rat heart. J Mol Cell Cardiol. 1997;29(8):2187–95. doi: 10.1006/jmcc.1997.0454.
  17. Vorobjeva N, Prikhodko A, Galkin I, Pletjushkina O, Zinovkin R, Sud'ina G, Chernyak B, Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur J Cell Biol. 2017;96(3): 254–65. doi: 10.1016/j.ejcb.2017.03.003.
  18. Гребенчиков ОА, Овезов АМ, Скрипкин ЮВ, Забелина ТС, Улиткина ОН, Луговой АВ, Приходько АС, Рыжков АЮ, Зиновкин РА. Синтетический аналог лей-энкефалина предотвращает развитие эндотелиальной дисфункции in vitro. Общая реаниматология. 2018;14(2):60–8. doi: 10.15360/1813-9779-2018-2-60-68.
  19. Welters ID, Menzebach A, Goumon Y, Langefeld TW, Harbach H, Mühling J, Cadet P, Stefano GB. Morphine inhibits AP-1 activity and CD14 expression in leukocytes by a nitric oxide and opioid receptor-dependent mechanism. Eur J Anaesthesiol. 2007;24(11): 958–65. doi: 10.1017/S026502150700083X.
  20. Szeto HH, Schiller PW, Zhao K, Luo G. Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides. FASEB J. 2005;19(1):118–20. doi: 10.1096/fj.04-1982fje.
  21. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304(1):425–32. doi: 10.1124/jpet.102.040147.

Supplementary files

There are no supplementary files to display.

Copyright (c) 2019 Grebenchikov O.A., Shabanov A.K., Kosov A.A., Skripkin Y.V., Yavorovsky A.G., Likhvantsev V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies