Gender particulars of morphological phenotypes of the right atrial appendage myocardium in patients with chronic heart failure who underwent an open heart surgery

Cover Page


Cite item

Full Text

Abstract

Background: For many decades, women in all age groups have a high risk of mortality and perioperative complications of cardiac surgery (CS), with its cause being unclear until now. Preoperative prediction of cardiovascular complications (CVC), based only on the clinical and instrumental criteria without taking gender into account, also remains unsuccessful. There is an opinion that the structural and functional changes in the myocardium, which exist before the operation, could significantly affect the patient's condition after cardiac surgery.

Aim: To identify morphological and molecular predictors of unfavorable prognosis in chronic heart failure (CHF) patients of both genders after CS.

Materials and methods: The study included 87 CHF patients of both genders referred for an elective cardiac surgery. Before the operation, a standard examination and treatment of CHF and concomitant disorders were performed. A sample of the right atrial appendage (RAA) myocardium that had been resected during the CS, was studied by histological, immunohistochemical (IHC) (expression of caspase-3, bcl-2, MMP-2, TIMP-1, p38α, CD-34) and morphometric methods. At days 10 to 14 after CS, the presence of CVC was assessed in all the participants. We examined the relationship between the development of CVC and morphological changes in the RAA myocardium before surgery, taking into account the patients' gender.

Results: Compared to the group with the favorable postoperative course in the myocardium, in the male/female group with unfavorable post-CS course there was a significant reduction in the cardiomyocyte (CMC) diameter (13.26 ± 3.14; p < 0.01 / 13.99 ± 3.64; p < 0.01), the bulk density (BD) of CMC (55.4 ± 9.45; p < 0.01 / 51.22 ± 10.12; p < 0.01) vol. %, a trophic index (0.24 ± 0.1; p < 0.01 / 0.21 ± 0.06; p < 0.01), as well as a significant increase in the stromal BD (44.91 ± 9.23; p < 0.01 / 47.78 ± 10.12; p <0.01) vol. % and the Kernogan index (1.78 ± 0.49; p < 0.01 / 1.43 ± 0.64; p = 0.143). IHC analysis of the RAA myocardium in the male/female group with an unfavorable postoperative course showed an increase in the amount of caspase-3 (+) CMC (3.9 ± 0.46; p < 0.01 / 3.34 ± 0.4; p < 0.01), an increase in the activity of +/++/+++ p38α (3/30/69; p < 0.01 / 2/39/60; p < 0.01) %, the expression of MMP-2 (2/56/43; p < 0.01 / 0/68/31; p < 0.01) %, with a decrease in the expression of TIMP-1 (19/29/52; p < 0.01 / 8/24/67; p < 0.01) % and BD of CD-34 stromal cells (18.46 ± 8.5; p < 0.01 / 27.54 ± 5.88; p < 0.01) %, compared with groups with a favorable current.

Сonclusion: The study showed the role of caspase-3, MMP-2, and CD-34 in the RAA myocardium as prognostic markers of CVC in the early postoperative period, as well as gender differences in modulation of the apoptotic pathways and inefficiency of anti-apoptotic mechanisms in the RAA myocardium. Based on the assessment of the RAA myocardial reorganization, an integral prognostic picture of the structural and functional changes in the myocardium has been proposed, which makes it possible to identify a special patient cohort with an exceptionally high risk of unfavorable course of the post-CS period.

About the authors

Yu. V. Liskovа

Orenburg State Medical University (OrSMU);
Military Medical Academy named after S.M. Kirov

Author for correspondence.
Email: liskovaj@bk.ru

Yuliya V. Liskova – MD, PhD, Assistant of the Department of Internal Diseases,  Orenburg State Medical University (OrSMU); Doctoral Student, 2nd Department (Therapy, Improvement of Doctors), Military Medical Academy named after S.M. Kirov

6 Sovetskaya ul., Orenburg, 460000, 6G Akademika Lebedeva ul., Saint Petersburg, 194044

Russian Federation

A. A. Stadnikov

Orenburg State Medical University (OrSMU)

Email: fake@neicon.ru

Alexander A. Stadnikov – ScD in Biology, Professor, Chief of the Department of Histology, Cytology and Embryology 

6 Sovetskaya ul., Orenburg, 460000

Russian Federation

S. P. Salikova

Military Medical Academy named after S.M. Kirov

Email: fake@neicon.ru

Svetlana P. Salikova – MD, PhD, Associate Professor, 2nd Department (Therapy, Improvement of Doctors) 

6G Akademika Lebedeva ul., Saint Petersburg, 194044

Russian Federation

References

  1. Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, Vecchione C, Valenti V, Chimenti I, De Falco E, Sciarretta S, Frati G. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195.
  2. Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10): 591– 602. doi: 10.1038/nrcardio.2017.65.
  3. Fazal L, Azibani F, Vodovar N, Cohen Solal A, Delcayre C, Samuel JL. Effects of biological sex on the pathophysiology of the heart. Br J Pharmacol. 2014;171(3): 555–66. doi: 10.1111/bph.12279.
  4. Seeland U, Regitz-Zagrosek V. Genes and hormones: sex differences in myocardial hypertrophy. Clin Res Cardiol Suppl. 2013;8(Suppl 1): 6–13. doi: 10.1007/s11789-013-0056-z.
  5. Patrizio M, Marano G. Gender differences in cardiac hypertrophic remodeling. Ann Ist Super Sanita. 2016;52(2): 223–9. doi: 10.4415/ ANN_16_02_14.
  6. Crabbe DL, Dipla K, Ambati S, Zafeiridis A, Gaughan JP, Houser SR, Margulies KB. Gender differences in post-infarction hypertrophy in end-stage failing hearts. J Am Coll Cardiol. 2003;41(2): 300–6. doi: 10.1016/S07351097(02)02710-9.
  7. Zhang XP, Vatner SF, Shen YT, Rossi F, Tian Y, Peppas A, Resuello RR, Natividad FF, Vatner DE. Increased apoptosis and myocyte enlargement with decreased cardiac mass; distinctive features of the aging male, but not female, monkey heart. J Mol Cell Cardiol. 2007;43(4): 487–91. doi: 10.1016/j.yjmcc.2007.07.048.
  8. Biondi-Zoccai GG, Baldi A, Biasucci LM, Abbate A. Female gender, myocardial remodeling and cardiac failure: are women protected from increased myocardiocyte apoptosis? Ital Heart J. 2004;5(7): 498–504.
  9. Lista P, Straface E, Brunelleschi S, Franconi F, Malorni W. On the role of autophagy in human diseases: a gender perspective. J Cell Mol Med. 2011;15(7): 1443–57. doi: 10.1111/j.15824934.2011.01293.x.
  10. Regitz-Zagrosek V, Seeland U. Sex and gender differences in myocardial hypertrophy and heart failure. Wien Med Wochenschr. 2011;161(5–6): 109–16. doi: 10.1007/s10354011-0892-8.
  11. Yeh JK, Wang CY. Telomeres and telomerase in cardiovascular diseases. Genes (Basel). 2016;7(9). pii: E58. doi: 10.3390/ genes7090058.
  12. Wong LS, van der Harst P, de Boer RA, Huzen J, van Gilst WH, van Veldhuisen DJ. Aging, telomeres and heart failure. Heart Fail Rev. 2010;15(5): 479–86. doi: 10.1007/s10741-0109173-7.
  13. Piro M, Della Bona R, Abbate A, Biasucci LM, Crea F. Sex-related differences in myocardial remodeling. J Am Coll Cardiol. 2010;55(11): 1057–65. doi: 10.1016/j.jacc.2009.09.065.
  14. Chen YZ, Qiao SB, Hu FH, Yuan JS, Yang WX, Cui JG, Zhang Y, Zhang CL. Left ventricular remodeling and fibrosis: Sex differences and relationship with diastolic function in hypertrophic cardiomyopathy. Eur J Radiol. 2015;84(8): 1487–92. doi: 10.1016/j.ejrad.2015.04.026.
  15. Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol. 2014;306(5):H628–40. doi: 10.1152/ajpheart.00859.2013.
  16. Kandasamy AD, Chow AK, Ali MA, Schulz R. Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res. 2010;85(3): 413–23. doi: 10.1093/cvr/cvp268.
  17. Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T, Takeda T, Osuka S, Morita T, Kondoh G, Uno Y, Kashiwase K, Taniike M, Nakai A, Matsumura Y, Miyazaki J, Sudo T, Hongo K, Kusakari Y, Kurihara S, Chien KR, Takeda J, Hori M, Otsu K. p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload. Mol Cell Biol. 2004;24(24): 10611–20. doi: 10.1128/MCB.24.24.10611-10620.2004.
  18. Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ. 2014;5(1): 6. doi: 10.1186/2042-6410-5-6.
  19. Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR. Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R972–8. doi: 10.1152/ajpregu.00045.2009.
  20. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med. 2013;19(3): 197–209. doi: 10.1016/j.molmed.2012.12.007.
  21. Novotny JL, Simpson AM, Tomicek NJ, Lancaster TS, Korzick DH. Rapid estrogen receptor-alpha activation improves ischemic tolerance in aged female rats through a novel protein kinase C epsilon-dependent mechanism. Endocrinology. 2009;150(2): 889–96. doi: 10.1210/en.2008-0708.
  22. Mikhail GW. Coronary revascularisation in women. Heart. 2006;92 Suppl 3:iii19–23. doi: 10.1136/hrt.2005.070359.
  23. Heer T, Hochadel M, Schmidt K, Mehilli J, Zahn R, Kuck KH, Hamm C, Bohm M, Ertl G, Hoffmeister HM, Sack S, Senges J, Massberg S, Gitt AK, Zeymer U. Sex differences in percutaneous coronary intervention-insights from the coronary angiography and pci registry of the German Society of Cardiology. J Am Heart Assoc. 2017;6(3). pii: e004972. doi: 10.1161/JAHA.116.004972.
  24. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P. Рекомендации ESC по диагностике и лечению острой и хронической сердечной недостаточности 2016. Российский кардиологический журнал. 2017;(1): 7–81. doi: 10.15829/1560-4071-2017-1-7-81.
  25. Мареев ВЮ, Агеев ФТ, Арутюнов ГП, Коротеев АВ, Мареев ЮВ, Овчинников АГ, Беленков ЮН, Васюк ЮА, Галявич АС, Гарганеева АА, Гиляревский СР, Глезер МГ, Козиолова НА, Коц ЯИ, Лопатин ЮМ, Мартынов АИ, Моисеев ВС, Ревишвили АШ, Ситникова МЮ, Скибицкий ВВ, Соколов ЕИ, Сторожаков ГИ, Фомин ИВ, Чесникова АИ, Шляхто ЕВ. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Утверждены на Конгрессе ОССН 7 декабря 2012 года, на Правлении ОССН 31 марта 2013 и Конгрессе РКО 25 сентября 2013 года. Журнал Сердечная Недостаточность. 2013;14(7): 379–472. doi: 10.18087/rhfj.2013.7.1860.
  26. Автандилов ГГ. Проблемы патогенеза и патологоанатомической диагностики болезней в аспектах морфометрии. М.: Медицина; 1984. 285 с.
  27. Лискова ЮВ, Стадников АА, Саликова СП. Роль гендерных особенностей в ремоделировании миокарда, развитии сердечно-сосудистых осложнений и эффективности фармакотерапии у пациентов с сердечной недостаточностью, подвергшихся кардиохирургическим операциям. Российский кардиологический журнал. 2017;(11): 77–85. doi: 10.15829/1560-4071-2017-11-77-85.
  28. Саликова СП, Стадников АА, Семагин АП. Морфологические аспекты ремоделирования сердца при хронической сердечной недостаточности. Морфология. 2002;122(5): 60–2.
  29. Казаков ВА. Морфологические аспекты послеоперационного ремоделирования левого желудочка у больных ишемической кардиомиопатией. Артериальная гипертензия. 2009;15(3): 376–83.
  30. Непомнящих ЛМ, Лушникова ЕЛ, Семенов ДЕ. Регенераторно-пластическая недостаточность сердца: морфологические основы и молекулярные механизмы. М.: Изд-во РАМН; 2003. 225 с.
  31. Осипова ОА, Нагибина АИ, Комисов АА, Петрова ГД, Шеховцова ЛВ, Власенко МА, Власенко ОА. Патоморфологические механизмы регуляции образования миокардиального фиброза у больных хронической сердечной недостаточностью на фоне ишемической болезни сердца. Журнал Сердечная Недостаточность. 2016;17(5): 357–64. doi: 10.18087/rhfj.2016.5.2137.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Liskovа Y.V., Stadnikov A.A., Salikova S.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies