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Prevention of epileptogenesis as a future
strategy for the treatment of epilepsy

A. Bragin'

Epilepsy affects more than 70 million people
worldwide. From 30 to 40% of the patients are
resistant to existing medication. This paper
describes the current state of the treatment
of epilepsy and proposes a future approach
to preventative treatment at earlier stages of
epileptogenesis. For preventative treatment
biomarkers are needed that predict the
development of epilepsy at its earlier stages.
Pathological high frequency oscillations are the
only acceptable biomarker of epileptogenesis.
However, the main limitation of this biomarker

electrodes. The search for noninvasive
biomarkers of epileptogenesis is one of the
hot topics in epilepsy research. There are
two potentially interesting directions in this
area: search for inflammatory biomarkers in
the peripheral blood and analysis of different
parameters of imaging methods. In this paper
we present approaches for identification
of potential epileptogenesis biomarkers by
magnetic resonance imaging. Some of magnetic
resonance imaging parameters correlate with
the existence of pathological high frequency

inflammation process in the brain and be
potential biomarkers of epileptogenesis.
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is the necessity of implanting of recording

Epilepsy from epileptic neurons to the
multifactorial disease

Each year in the U.S. approximately 150,000 people
develop epilepsy [1-3]. In spite of tremendous success
in our understanding of its neuronal and molecular
mechanisms, from 30 to 40% of patients with epilep-
sy are resistant to current medical treatments [4-7].
Pharmacoresistant epilepsy is a major health burden
worldwide [8, 9]. Within the last 30 years more than
20 new antiepileptic drugs have been introduced to the
clinic, however, to the big disappointment of scientists
and clinicians the success in the treatment of patients
with epilepsy increased only by 2-3% [10-13].

The overarching hypothesis in electrophysiology
during the last century was that the epileptic brain
consists of a certain number of epileptic neurons
with altered properties of receptors and ion channels.
A countless number of experiments and publications
were in line with this hypothesis, and altered proper-
ties of many receptors and channels were discovered
in epileptic brain. All new antiepileptic drugs were
designed based on these data targeting one or another
channel or receptor with the hope that it would stop
seizures. The low effectiveness of all new antiepileptic
drugs indicated that altered properties at the molec-
ular level are only a part of problems in the epileptic
brain. One of the reasons for the low efficiency of the
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old and new antiepileptic drugs was the expectation
that we could control seizure activity by modifying
the activity of a certain “magic” channels or receptors.
In reality, the deeper we investigate mechanisms of
epilepsy, the more we see the complicated nature of
the disease. The second issue, complicating the pro-
cess of epilepsy treatment, was lack of understanding
that by the time a patient was visiting a doctor and
reporting that he/she had had a seizure, the patient’s
brain had undergone a long complicated process of
restructuring of brain circuitry prone to generate
seizure activity and involving abnormalities in mul-
tiple channels and receptors both in neuronal and
non-neuronal cells.

The current understanding is symbolized by the
recognition that the epileptic brain is associated not
only with the existence of neurons with altered mem-
brane properties, but also with altered connections be-
tween them. Slowly this notion was transformed into
recognition of the concept that epilepsy is a disease of
neuronal networks.

Currently it is clear that epilepsy is a multifactorial
disorder, involving formation of distributed neuronal
networks [14-17], chronic inflammation [18-21],
and the existence of a spectrum of psychological
problems, such as anxiety, depression and cognitive
impairment [22].
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Cognitive performance such as learning, memory
and decision making depends on the coordinated ac-
tivity of multiple brain areas, where hippocampus and
prefrontal cortex play key roles [23-25]. These brain
areas are also part of distributed neural systems under-
lying anxiety, emotion and motivation [26].

There is a growing need to understand the role of
inflammation during epileptogenesis, but so far no
reliable inflammatory biomarker of epileptogenesis
has been found in animal models [18, 27, 28]. The
Magnetic Resonance Imaging (MRI) approach may
help to test inflammatory processes noninvasively and
has a great potential as a biomarker of epileptogene-
sis. Several groups are using functional MRI (fMRI) to
study the blood oxygen level dependent (BOLD) sig-
nal and changes in microstructure of brain areas under
different experimental conditions [29-35]. According
to some publications, fMRI and Diffusion Tensor
Imaging (DTTI) are promising indirect measures of in-
flammation processes and gliosis [36-38]. Although,
fMRI does not directly reflect the level of inflamma-
tion, functional connectivity between brain areas, such
as striatum and prefrontal cortex, decreases when
the level of inflammation increases [39]. One of the
DTI parameters, fractional anisotropy (FA), has been
shown to correlate with the level of inflammation [40-
42], as well as microstructural integrity [40]. FA values
both increase and decrease after traumatic brain injury
(TBI) [43-45]. In patients with stroke FA values may be
useful for prediction of cognitive functional outcomes
[46] and can predict recovery of motor function after
a stroke during the early subacute phase [47].

The combination of electrographic and imaging
methods allows for identification of brain areas, where
changes in metabolism and blood flow are associated
with the formation of pathological neuronal networks.
There is good correspondence between networks de-
tected by electrographic and imaging methods [17,
48-50].

One of the ways to reduce the health burden of ep-
ilepsy is to prevent its development after specific epi-
leptogenic insults. There are two key elements critical
to the development of preventative therapy: 1) a full
understanding of the mechanisms of epileptogenesis
and 2) the existence of clinically useful noninvasive bi-
omarkers of epileptogenesis.

It is not clear whether all above mentioned changes
at multiple levels observed in patients with epilepsy are
related to seizure activity or whether they occur earli-
er and are long-lasting consequences of an initial brain
injury which is invisible without special diagnostic tests
that predict later epilepsy. Recognition of this in ani-
mal models of chronic epilepsy will allow investigation
of their initial mechanisms and discover new targets
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for prevention of epileptogenesis, as well as behavioral
candidates. A combination of electrophysiological, im-
aging and behavioral biomarkers could provide better
diagnosis, better specificity and sensitivity for detec-
tion of the ongoing process of epileptogenesis.

It is likely that a profile of biomarkers will be re-
quired for most clinical applications in addition to elec-
troencephalogram (EEG) [51], which will improve the
accuracy of epilepsy prediction [52-57]. Compared to
electrophysiological methods, MRI has higher spatial
resolution and provides valuable contrasting of grey
and white matter. Functional MRI and DTT can detect
various progressive abnormalities after a brain injury
in multiple brain areas [54, 58, 59]. There is a strong
coherence between functional connectivity estimated
by fMRI signal and changes in the FA map, as well as
in structural connectivity estimated by DTI [60]. In ad-
dition, changes in the BOLD signal correlate with the
energy of smoothed high frequency broadband signals
recorded in electrophysiological experiments [61-63].

It is conceptually important to consider that, with-
in the brain framework, there is an interconnectedness
between different levels of brain activity, and a com-
plex system where all levels interact with each other to
generate emergent behaviors that can be reflected in
specific functions, such as an EEG pattern, a metabolic
process (as measured by fMRI), or a pathologic pheno-
type [64].

Considering multifactorial nature of epileptogen-
esis, it is tempting to find noninvasive biomarkers of
epileptogenesis. It is crucial for designing of future clin-
ical trials for prevention of epileptogenesis; recognizing
this, the U.S. National Institutes of Health (NIH) sev-
eral years ago began funding an international project
for prevention of epileptogenesis, which involves mul-
tiple hospitals and laboratories from the USA, Finland
and Australia (https://epibios.loni.usc.edu). This is
a unique translational project, which is aimed to devel-
op the first validated multimodal biomarker panel for
preclinical and clinical anti-epileptogenesis trials.

Pathological high frequency oscillations as

a bridge for identification of noninvasive
biomarkers of epileptogenesis

This section will provide a short description of
published and preliminary results of how the research
team at the UCLA Seizure Disorder Center is trying to
find biomarkers of epileptogenesis. The experiments
described here are performed in conjunction with
ongoing research of the EpiBios4Rx project.

Pathological high frequency oscillations and epilepsy

In 1999 our laboratory discovered the existence of
pathological high frequency oscillations (pHFOs) in
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the frequency range 250-500 Hz in the epileptic brain
(Fig. 1) [65-67]. These oscillations where observed in
epileptic animals, as well as in patients with temporal
lobe epilepsy. We have shown that these oscillations
are generated by local clusters of pathologically inter-
connected neurons (PIN-clusters) and reflect hyper-
synchronous bursts of population spikes generated
predominantly by principal cells [68, 69]. Later these
data were confirmed in other laboratories in different
types of epilepsy [70-75]. It was shown that pHFOs
were associated with seizure onset zone, and complete
surgical removal of brain areas generating pHFOs was
followed by a complete disappearance of seizures [76-
78]. Currently this approach is used for pre-surgical
localization of seizure onset zone in many hospitals in
the USA, Canada and Europe.

Analysis of time of pHFOs occurrence after status
epilepticus and traumatic brain injury showed that
pHFOs occured much earlier than recurrent sponta-
neous seizures; their occurrence after a brain injury al-
lows for prediction which animals would later develop
and would not develop epilepsy [79, 80]. We hypothe-
sized that the process of epileptogenesis was associat-
ed with the formation of the network of PIN-clusters
[14, 68]. Clinical seizures occur when motor areas are
involved in this PIN-clusters network (Fig. 2). So far
pHFOs are the only acceptable biomarker of epilep-
togenesis. However, the primary limitation of this bi-
omarker is that it requires invasive recordings of brain
activity, which excludes it from being a potential diag-
nostic tool. There is a need for noninvasive biomark-
ers for easy identification of epileptogenesis and pre-
ventative treatment. Noninvasive imaging biomarkers
would have a much greater translational value.

Spatial and temporal distribution of high frequency
oscillations during epileptogenesis after status
epilepticus and TBI

Recently, we found that epileptogenesis after TBI has
electrographic characteristics similar to those in pilo-
carpine and kainic acid (KA) status epilepticus models
[80]. As in the KA model [81], the occurrence of pHFOs
within the first two weeks after TBI is a biomarker of ep-
ileptogenesis [80]. These pHFOs appeared in the group
of animals that later developed epilepsy, and they oc-
curred within the TBI core or perilesional area, which
then propagated to other neighboring areas. We de-
scribed that after TBI, in the group that later developed
epilepsy, pHFOs occurred independently, as well as in
association with spindle oscillations. They were nested
in the troughs of spindle oscillations (Fig. 3) and associ-
ated with hypersynchronized discharges of multiunit ac-
tivity (Fig. 3B and C). In these TBI experiments, only in
rats that later developed epilepsy, an increase of normal
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Fig. 1. Pathological high frequency oscillations in an epileptic rat. A. Example raw (black)

and band pass (100-500 Hz) filtered data (blue) during the inter-ictal period recorded from
various brain areas. B. Extended examples of pathological high frequency oscillations (top) and
their time frequency plots (bottom); L left, R right, a anterior, p posterior, Pir piriform cortex,

Hip hippocampus, EC entorhinal cortex

high frequency oscillations rate was observed in multiple
brain areas, as was the occurrence of pHFOs. The oc-
currence of pHFOs outside of the lesioned hippocampus
and outside of the TBI area supports the hypothesis of
the formation of a PIN-cluster network during epilep-
togenesis [14, 68]. These PIN-clusters generate pHFOs,
as a result of the hypersynchronization of neuronal dis-
charges forming population spikes, maintain fast propa-
gation of epileptiform activity and trigger seizures.
Correlation between pHFOs, PIN-cluster network
formation and changes in other modalities of brain
function and structure, such as alterations of intrinsic
functional brain connectivity, malformation of local
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Fig. 2. A schematic presentation of a PIN-cluster (A). Grey, principal cells: green, interneurons.
Red lines are abnormal connections between neurons with a PIN-cluster. B, examples of

raw (top) band pass filtered (middle) and time frequency plot (bottom) of pathological high
frequency oscillation. C, a schematic presentation of a PIN-cluster network. Dashed box is
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Fig. 3. Coupling of high frequency oscillations and hypersynchronized multiunit discharges
with spindle activity in perilesional area 10 days after traumatic brain injury in the rat that later
developed epilepsy. A. An example of single spindle oscillation. Black, raw data; green, band
pass (100-500 Hz) filtered signal indicating high frequency oscillation activity. B. An example
of a single spindle wave. C. Perievent histogram triggered by the 1 spindle event showing
hypersynchronization of multiunit discharges with spindle events
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structure assemblies and reorganization of large-scale
fiber track networks is a major challenge, because they
may not be linear [64]. However, studies of such cor-
relative connections should help to build bridges be-
tween different levels of brain activity in pathological
conditions, such as epilepsy.

Currently the pathophysiology of epileptogenesis
has been studied with electrographic methods; howev-
er these electrical patterns reflect multiple functional
and structural disturbances that might be measured by
MRI. Imaging methods have the capability to reveal
3D networks in the brain, while electrographic meth-
ods have high temporal, but limited spatial resolution.

fMRI — electrographic correlates of epileptogenesis

At present, the preliminary data on fMRI experiments
pertain only to the KA-model of chronic epilepsy.
This series of experiments was carried out in 11 rats.
In all of these rats baseline fMRI data collection was
performed one week before KA and the second fMRI
screening was performed 10 days after the KA injec-
tion. Immediately after the second MRI, microelec-
trodes were implanted bilaterally in 8 brain regions: left
(L) and right (R) anterior cingulate (LAC and RAC),
prelimbic (LPC and RPC), motor cortex (LMC and
RMC), thalamus (LTh and RTh) and hippocampus
(LHP and RHP). Within this group valuable data were
obtained from 9 rats; all of them became epileptic with-
in 2-4 months. The baseline BOLD signal function-
al connectivity (FC) between LAC/RAC, LPC/RPC,
LMC/RMC, LTL/RTL, anterior and posterior hippo-
campi (combined DG&CALI signals) was compared
before and 10 days after the KA injection. In epileptic
rats, we observed a decline of FC between certain brain
areas (Fig. 4A) [p<0.0001] and an increase of FC with-
in brain areas (the data values are not shown). Three
days after the second fMRI scan, electrographic FC for
the same brain areas was assessed on the basis of high
gamma frequency band (HGFB), as described in sev-
eral publications [61-63]. Similar to BOLD signal FC,
the HGFB FC showed a concordant decrease between
multiple brain areas (Fig. 4B) [p=0.011].

The agreement between the different measures of
FC indicates that despite the recording of fMRI and
electrographic signals 3 days apart, similar changes in
FC were measured. This indicates the existence of con-
sistent changes in the epileptic brain that promote (or
maintain) the process of epileptogenesis. Comparing
the correlation between BOLD and HGFB function-
al connectivity we found that during epileptogenesis
there was an increase in BOLD-electrographic cou-
pling (Fig. 5A vs B), associated with increased syn-
chrony of multiunit discharges during HGFB events
(Fig. 5Cvs D).
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DTl correlates of epileptogenesis

Our analysis of in-vivo DTT data in 9 TBI rats showed
both increases and decreases in FA values 2 weeks after
TBI in different brain areas. However, in the major spe-
cific areas of interest (the hippocampus, prefrontal cor-
tex and thalamus ipsilateral to TBI) FA was significant-
ly increased in the hippocampus (Fig. 6A), but not in
the prefrontal cortex and thalamus, compared to those
in the sham-injured control. At the individual level, FA
values both increased and decreased in different rats
(Fig. 6B). Electrophysiological evaluation of these rats is
still in progress and we predict that similar to the KA
model, those rats in which FA was not changed signifi-
cantly (Fig. 6B, black lines), will belong to the group with
no subsequent epilepsy, while those with increased FA
(Fig. 6B, green lines) will belong to the group that later
develop epilepsy.

Behavioral correlates of epileptogenesis

These experiments were performed in 5 rats using the
water-cheeseboard maze (WCBM) test (Fig. 7A). Two
days before the behavioral experiments the rats were
placed on the WCBM table, where all wells were filled
with water, twice for 30 minutes to make them famil-
iar with the WCBM environment.

After two days of water deprivation, the learning
process experiments began, where only 4 wells were
filled with water. The rats were placed in the starting
box, the door was opened, and the rats were allowed to
search for a well with a water. After finding all of them,
the rats were returned to the start box and the proce-
dure was repeated 10 times. The next day the procedures
were repeated. All data were recorded and analyzed with
“AnyMaze” software. In this task, we analyzed the level
of anxiety, which was measured by the time required for
the rat go from the start box to the first well with the wa-
ter (Fig. 7. Time 1). The quality of cognitive performance
(memory score) was estimated by the quality of remem-
bering the spatial location of the remaining 3 water wells.
It was estimated by measuring the time required for the
rat to reach each of them, as well as by measuring the
length of the path it took to reach each well and the time
(Time 2+Time 3+Time 4). The memory score (MS)
was calculated by the formula: MS=(1 - t-i/t, )x 100,
where i is the time taken to complete the first task on
the second experimental day and ¢, is the time taken to
complete the last task on the first day.

During the test at the end of the second week after the
KA injection there was an increase in anxiety in 3 rats and
in 2 rats the anxiety level was lower than baseline (Fig. 7,
B, orange bars). The same rats that demonstrated higher
anxiety, showed poor performance during the memory
test (Fig. 7, B, green bars). The behavioral abnormali-
ties in these 3 rats were associated with the occurrence
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Fig. 5. A-B. Increased coupling between functional magnetic resonance imaging and HGFB
functional connectivity during epileptogenesis. Synchrony of multiunit discharges during
smoothed gamma events at baseline (C) and during epileptogenesis (D)

of pHFOs in the hippocampus and prefrontal cortex and
the occurrence of spindles in the prefrontal cortex trig-
gered by hippocampal pHFOs and later the occurrence of
seizures within a 6 month period (data not shown).

Summary

The presented evidence indicates at the neuronal level
that epileptogenesis is characterized by the appearance
of distributed networks of pHFO generating neuronal
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Fig. 6. Changes in fractional anisotropy (FA) values after traumatic
brain injury (TBI) in three different brain areas. A. Average FA values
in hippocampus (Hip), prefrontal cortex (PFC) and thalamus with
standard deviation, and p values on the top. B. FA values in the
same areas from individual 9 rats of the sham group (blue) and

9 rats of the TBI group (red)

clusters. These PIN clusters initially appear in the KA
or TBI perilesional areas and spread towards other
brain areas. Our data also illustrate that functional
connectivity between different brain areas estimated by
BOLD signals, as well as by electrographic signals (HGFB
signal), decreases within the first two weeks after TBI in
the group that later developed epilepsy, and that during
epileptogenesis the coupling between BOLD and HGFB
signals increases. In these preliminary experiments, we
also found that FA value in some brain areas is increased
in the animals that later developed epilepsy. We provide
preliminary evidence that during epileptogenesis the
brain undergoes consistent changes detectable by
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both electrographic and imaging methods. Although,
electrophysiological patterns with increased synchrony
of neuronal discharges leading to generation of pHFOs,
as well as an increase in BOLD - HGFB coupling,
might be expected to result in increased FC between
different brain areas, we found FC to be decreased.
Our preliminary explanation for this unexpected
finding is that pHFOs generate noisy signals disrupting
the coherence between brain areas that exist under
normal conditions, which results in reduced strength of
functional connectivity between them. However, further
data are required to explain or reject this hypothesis.

We find that simultaneously with a decrease in FC
between neuronal networks, FA increases, and this may
be related to heightened inflammatory processes that oc-
cur during this post-injury time. Although we do not yet
understand the full relationship between electrographic
and imaging processes, imaging may yield sensitive non-
invasive biomarkers of epileptogenesis, eliminating the
need for invasive recording of pHFOs for this purpose.

An increase in anxiety and cognitive decline oc-
curring before the appearance of spontaneous seizures
indicates that these parameters could be behavioral bio-
markers of epileptogenesis. ®
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